Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization

It is essential for autonomous vehicles at level 3 or higher to have the ability to predict the trajectories of surrounding vehicles to safely and effectively plan and drive along trajectories in complex traffic situations. However, predicting the future behavior of vehicles is a challenging issue b...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 23; p. 8152
Main Authors: Yu, Dongyeon, Lee, Honggyu, Kim, Taehoon, Hwang, Sung-Ho
Format: Journal Article
Language:English
Published: Basel MDPI AG 06.12.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is essential for autonomous vehicles at level 3 or higher to have the ability to predict the trajectories of surrounding vehicles to safely and effectively plan and drive along trajectories in complex traffic situations. However, predicting the future behavior of vehicles is a challenging issue because traffic vehicles each have different drivers with different driving tendencies and intentions and they interact with each other. This paper presents a Long Short-Term Memory (LSTM) encoder–decoder model that utilizes an attention mechanism that focuses on certain information to predict vehicles’ trajectories. The proposed model was trained using the Highway Drone (HighD) dataset, which is a high-precision, large-scale traffic dataset. We also compared this model to previous studies. Our model effectively predicted future trajectories by using an attention mechanism to manage the importance of the driving flow of the target and adjacent vehicles and the target vehicle’s dynamics in each driving situation. Furthermore, this study presents a method of linearizing the road geometry such that the trajectory prediction model can be used in a variety of road environments. We verified that the road geometry linearization mechanism can improve the trajectory prediction model’s performance on various road environments in a virtual test-driving simulator constructed based on actual road data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21238152