CEST MRI data analysis using Kolmogorov‐Arnold network (KAN) and Lorentzian‐KAN (LKAN) models
Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 94; číslo 3; s. 1301 - 1317 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.09.2025
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN).
Methods
CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z‐spectra), whereas the remaining two were reserved for testing (51 977 Z‐spectra). The performance of multi‐layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi‐pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT).
Results
The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel‐wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP.
Conclusion
This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST‐KAN and CEST‐LKAN have the potential to be robust and reliable post‐analysis tools for CEST MRI in clinical settings. |
|---|---|
| AbstractList | Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z‐spectra), whereas the remaining two were reserved for testing (51 977 Z‐spectra). The performance of multi‐layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi‐pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel‐wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. Conclusion This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST‐KAN and CEST‐LKAN have the potential to be robust and reliable post‐analysis tools for CEST MRI in clinical settings. To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN).PURPOSETo investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN).CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT).METHODSCEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT).The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP.RESULTSThe KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP.This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings.CONCLUSIONThis study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings. To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN). CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB , water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings. Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z‐spectra), whereas the remaining two were reserved for testing (51 977 Z‐spectra). The performance of multi‐layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi‐pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel‐wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. Conclusion This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST‐KAN and CEST‐LKAN have the potential to be robust and reliable post‐analysis tools for CEST MRI in clinical settings. |
| Author | Wang, Jiawen Wang, Ziyan Huang, Jianpan Zhang, Huabin Cai, Pei |
| AuthorAffiliation | 1 Laboratory of Advanced Imaging in Medicine (AIM), Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China |
| AuthorAffiliation_xml | – name: 1 Laboratory of Advanced Imaging in Medicine (AIM), Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China |
| Author_xml | – sequence: 1 givenname: Jiawen surname: Wang fullname: Wang, Jiawen organization: The University of Hong Kong – sequence: 2 givenname: Pei surname: Cai fullname: Cai, Pei organization: The University of Hong Kong – sequence: 3 givenname: Ziyan surname: Wang fullname: Wang, Ziyan organization: The University of Hong Kong – sequence: 4 givenname: Huabin orcidid: 0000-0002-5170-2753 surname: Zhang fullname: Zhang, Huabin organization: The University of Hong Kong – sequence: 5 givenname: Jianpan orcidid: 0000-0002-4453-8764 surname: Huang fullname: Huang, Jianpan email: jphuang@hku.hk organization: The University of Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40468586$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1uEzEUhS1URNPCghdAI7FJF9Nee-z5WaEoKlA1AamUteWxPcHFY7f2TKuw4hF4Rp4Ep0kRVLC60r3fOTq65wDtOe80Qi8xHGMActKH_rgARusnaIIZITlhDd1DE6go5AVu6D46iPEKAJqmos_QPgVa1qwuJ0jMTz9dZsuLs0yJQWTCCbuOJmZjNG6VnXvb-5UP_vbn9x-z4LxVmdPDnQ9fs-n57MNREqhs4YN2wzcjXKLSNpsu7m-9V9rG5-hpJ2zUL3bzEH1-e3o5f58vPr47m88WuaQpTC7qQukWuqqsWkFVXSncdnVbA0hGVCtloRg0rCuBUi07wgDaQqZFq3ClC1Ucojdb3-ux7bWSKVIQll8H04uw5l4Y_vfFmS985W85JgRIVUBymO4cgr8ZdRx4b6LU1gqn_Rh5QTBrakpwndDXj9ArP4b0vA1FGmCkbGiiXv0Z6XeWh_cn4GQLyOBjDLrj0gxiMH6T0FiOgW8K5qlgfl9wUhw9UjyY_ovdud8Zq9f_B_nyYrlV_AIMQLWs |
| CitedBy_id | crossref_primary_10_1016_j_mrl_2025_200240 crossref_primary_10_1002_nbm_70082 |
| Cites_doi | 10.1002/mrm.28411 10.1002/mrm.23141 10.1002/mrm.29044 10.1002/mrm.25995 10.1002/mp.12600 10.1006/jmre.1999.1956 10.1126/sciadv.aba3884 10.1002/nbm.4416 10.1016/j.jmr.2011.05.001 10.1002/mrm.29748 10.1002/mrm.10651 10.1002/mrm.29876 10.1016/j.neuroimage.2013.03.072 10.1002/nbm.4940 10.1002/nbm.3834 10.1002/nbm.3716 10.1002/mrm.29520 10.1002/mrm.24315 10.1038/nm.2615 10.1002/nbm.3216 10.1038/nm907 10.1002/mrm.1910100113 10.1002/mrm.28433 10.1002/mrm.22761 10.1002/mrm.27751 10.1002/mrm.28770 10.1002/mrm.27514 10.1111/jnc.13771 10.1002/nbm.2792 10.1016/j.neuroimage.2013.03.047 10.1007/BF02551274 10.1016/j.nicl.2021.102867 10.1109/TMI.2019.2899328 10.1002/mrm.24520 10.1002/mrm.24822 10.1126/scitranslmed.aaa7095 10.1002/mrm.26100 10.1038/s41551-021-00809-7 10.1002/mrm.28117 10.1002/mrm.25990 10.1002/nbm.4954 10.1007/s11307-016-0995-0 10.1002/mrm.25581 10.1002/mrm.28573 10.1016/0893-6080(89)90020-8 10.1002/mrm.29241 10.1002/nbm.4710 10.1109/TMI.2005.854517 10.1002/nbm.4640 10.1002/mrm.29970 10.1016/s0730‐725x(01)00222‐3 10.1038/s41467‐020‐14874‐0 10.1002/mrm.27690 10.1002/mrm.29448 10.1006/jmre.1998.1440 10.1177/0271678X20941264 10.1038/nm.3252 10.1002/mrm.25795 10.1016/j.neuroimage.2020.117165 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.30548 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | WANG et al |
| EISSN | 1522-2594 |
| EndPage | 1317 |
| ExternalDocumentID | PMC12202730 40468586 10_1002_mrm_30548 MRM30548 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: University of Hong Kong funderid: 109000487; 109001694; 204610401; 204610519 – fundername: National Natural Science Foundation of China funderid: 82402225 – fundername: National Natural Science Foundation of China grantid: 82402225 – fundername: University of Hong Kong grantid: 204610401 – fundername: University of Hong Kong grantid: 204610519 – fundername: University of Hong Kong grantid: 109001694 – fundername: University of Hong Kong grantid: 109000487 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4468-a83deb0f767ba4d87d1bf8b800c52dbcc3d5095f6044ecf2500b3c95fbd17e3d3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 02:05:12 EST 2025 Fri Sep 05 15:59:32 EDT 2025 Sat Nov 29 14:36:17 EST 2025 Mon Jun 30 02:54:33 EDT 2025 Sat Nov 29 07:40:23 EST 2025 Tue Nov 18 21:28:03 EST 2025 Thu Jul 03 09:30:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | human brain Kolmogorov‐Arnold network (KAN) multi‐pool Lorentzian fitting (MPLF) Lorentzian‐KAN (LKAN) chemical exchange saturation transfer (CEST) |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4468-a83deb0f767ba4d87d1bf8b800c52dbcc3d5095f6044ecf2500b3c95fbd17e3d3 |
| Notes | Jiawen Wang and Pei Cai contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4453-8764 0000-0002-5170-2753 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30548 |
| PMID | 40468586 |
| PQID | 3229052694 |
| PQPubID | 1016391 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12202730 proquest_miscellaneous_3215984218 proquest_journals_3229052694 pubmed_primary_40468586 crossref_citationtrail_10_1002_mrm_30548 crossref_primary_10_1002_mrm_30548 wiley_primary_10_1002_mrm_30548_MRM30548 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2013; 69 2023; 36 2017; 44 2015; 74 2016; 75 2012; 18 2020; 11 2024 2003; 50 2005; 24 2013; 19 2020; 6 2017; 30 2021; 32 2017; 77 2003; 9 2001; 19 2022; 35 2011; 65 2012; 25 2012; 68 2021; 41 2021; 85 2012; 67 1989; 2 2021; 86 2020; 84 1998 2019; 38 2020; 221 2022; 87 2022; 88 1998; 133 2015; 7 2011; 211 2015; 28 2019; 82 2019; 81 1989; 10 2023; 89 2013; 77 2023 2022 2022; 6 2024; 91 2017 2016; 139 2017; 19 2000; 143 2023; 90 2014; 71 2023; 91 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Haykin S (e_1_2_8_56_1) 1998 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Tian Y (e_1_2_8_55_1) 2022 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Lundberg SM (e_1_2_8_60_1) 2017 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 19 start-page: 1067 year: 2013 end-page: 1072 article-title: In vivo imaging of glucose uptake and metabolism in tumors publication-title: Nat Med – volume: 139 start-page: 432 year: 2016 end-page: 439 article-title: Mapping the alterations in glutamate with Glu CEST MRI in a mouse model of dopamine deficiency publication-title: J Neurochem – volume: 36 year: 2023 article-title: MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification publication-title: NMR Biomed – volume: 30 year: 2017 article-title: Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects publication-title: NMR Biomed – volume: 36 year: 2023 article-title: Deep learning to reconstruct quasi‐steady‐state chemical exchange saturation transfer from a non‐steady‐state experiment publication-title: NMR Biomed – volume: 44 start-page: 6209 year: 2017 end-page: 6224 article-title: A parallel MR imaging method using multilayer perceptron publication-title: Med Phys – volume: 41 start-page: 1013 year: 2021 end-page: 1025 article-title: D‐glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on‐resonance variable delay multiple pulse MRI publication-title: J Cereb Blood Flow Metab – volume: 211 start-page: 149 year: 2011 end-page: 155 article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian‐line‐fit analysis of z‐spectra publication-title: J Magn Reson – volume: 6 start-page: 648 year: 2022 end-page: 657 article-title: Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning publication-title: Nat Biomed Eng – year: 2024 – volume: 81 start-page: 69 year: 2019 end-page: 78 article-title: Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian line‐shape fitting CEST method publication-title: Magn Reson Med – volume: 89 start-page: 1543 year: 2023 end-page: 1556 article-title: DeepCEST 7 T: fast and homogeneous mapping of 7 T CEST MRI parameters and their uncertainty quantification publication-title: Magn Reson Med – volume: 11 start-page: 1072 year: 2020 article-title: In vivo imaging of phosphocreatine with artificial neural networks publication-title: Nat Commun – volume: 2 start-page: 303 year: 1989 end-page: 314 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math Control Signals Syste – volume: 9 start-page: 1085 year: 2003 end-page: 1090 article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI publication-title: Nat Med – volume: 85 start-page: 2040 year: 2021 end-page: 2054 article-title: Unsupervised learning for magnetization transfer contrast MR fingerprinting: application to CEST and nuclear Overhauser enhancement imaging publication-title: Magn Reson Med – volume: 89 start-page: 233 year: 2023 end-page: 249 article-title: CEST MR fingerprinting (CEST‐MRF) for brain tumor quantification using EPI readout and deep learning reconstruction publication-title: Magn Reson Med – volume: 77 start-page: 114 year: 2013 end-page: 124 article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7 T publication-title: Neuroimage – volume: 84 start-page: 450 year: 2020 end-page: 466 article-title: DeepCEST 3T: robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T publication-title: Magn Reson Med – volume: 6 year: 2020 article-title: Altered d‐glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose‐enhanced MRI publication-title: Sci Adv – volume: 75 start-page: 1630 year: 2016 end-page: 1639 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 tesla publication-title: Magn Reson Med – volume: 82 start-page: 622 year: 2019 end-page: 632 article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T publication-title: Magn Reson Med – volume: 91 start-page: 51 year: 2023 end-page: 60 article-title: Creatine mapping of the brain at 3T by CEST MRI publication-title: Magn Reson Med – year: 1998 – volume: 77 start-page: 196 year: 2017 end-page: 208 article-title: Downfield‐NOE‐suppressed amide‐CEST‐MRI at 7 tesla provides a unique contrast in human glioblastoma publication-title: Magn Reson Med – volume: 30 year: 2017 article-title: Investigation of the contribution of total creatine to the CEST Z‐spectrum of brain using a knockout mouse model publication-title: NMR Biomed – volume: 2 start-page: 359 year: 1989 end-page: 366 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – volume: 10 start-page: 135 year: 1989 end-page: 144 article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo publication-title: Magn Reson Med – volume: 19 start-page: 225 year: 2017 end-page: 232 article-title: Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness publication-title: Mol Imaging Biol – start-page: 4768 year: 2017 end-page: 4777 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of the 31st International Conference on Neural Information Processing System – volume: 75 start-page: 88 year: 2016 end-page: 96 article-title: Magnetization transfer contrast‐suppressed imaging of amide proton transfer and relayed nuclear overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T publication-title: Magn Reson Med – volume: 91 start-page: 1908 year: 2024 end-page: 1922 article-title: Machine learning‐based amide proton transfer imaging using partially synthetic training data publication-title: Magn Reson Med – year: 2022 – volume: 77 start-page: 262 year: 2013 end-page: 267 article-title: Imaging of glutamate in the spinal cord using GluCEST publication-title: Neuroimage – volume: 68 start-page: 1764 year: 2012 end-page: 1773 article-title: Natural D‐glucose as a biodegradable MRI contrast agent for detecting cancer publication-title: Magn Reson Med – volume: 74 start-page: 1556 year: 2015 end-page: 1563 article-title: Dynamic glucose enhanced (DGE) MRI for combined imaging of blood‐brain barrier break down and increased blood volume in brain cancer publication-title: Magn Reson Med – volume: 85 start-page: 298 year: 2021 end-page: 308 article-title: qMTNet: accelerated quantitative magnetization transfer imaging with artificial neural networks publication-title: Magn Reson Med – volume: 35 year: 2022 article-title: Sensitivity schemes for dynamic glucose‐enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3 T publication-title: NMR Biomed – volume: 36 year: 2023 article-title: Global deep learning optimization of chemical exchange saturation transfer magnetic resonance fingerprinting acquisition schedule publication-title: NMR Biomed – volume: 19 start-page: 51 year: 2001 end-page: 57 article-title: Classification of signal‐time curves from dynamic MR mammography by neural networks publication-title: Magn Reson Imaging – volume: 28 start-page: 1 year: 2015 end-page: 8 article-title: CEST signal at 2 ppm (CEST@ 2ppm) from Z‐spectral fitting correlates with creatine distribution in brain tumor publication-title: NMR Biomed – volume: 67 start-page: 1579 year: 2012 end-page: 1589 article-title: In vivo three‐dimensional whole‐brain pulsed steady‐state chemical exchange saturation transfer at 7 T publication-title: Magn Reson Med – volume: 88 start-page: 546 year: 2022 end-page: 574 article-title: Review and consensus recommendations on clinical APT‐weighted imaging approaches at 3T: application to brain tumors publication-title: Magn Reson Med – volume: 25 start-page: 1305 year: 2012 end-page: 1309 article-title: Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI publication-title: NMR Biomed – volume: 35 year: 2022 article-title: Rapid MR relaxometry using deep learning: an overview of current techniques and emerging trends publication-title: NMR Biomed – volume: 69 start-page: 760 year: 2013 end-page: 770 article-title: MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear Overhauser effect at 9.4 T publication-title: Magn Reson Med – volume: 81 start-page: 3901 year: 2019 end-page: 3914 article-title: DeepCEST: 9.4 T chemical exchange saturation transfer MRI contrast predicted from 3 T data–a proof of concept study publication-title: Magn Reson Med – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – volume: 7 start-page: 309ra161 year: 2015 article-title: Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy publication-title: Sci Transl Med – volume: 85 start-page: 254 year: 2021 end-page: 267 article-title: Relayed nuclear Overhauser enhancement imaging with magnetization transfer contrast suppression at 3 T publication-title: Magn Reson Med – volume: 65 start-page: 927 year: 2011 end-page: 948 article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't? publication-title: Magn Reson Med – volume: 50 start-page: 1120 year: 2003 end-page: 1126 article-title: Amide proton transfer (APT) contrast for imaging of brain tumors publication-title: Magn Reson Med – volume: 75 start-page: 137 year: 2016 end-page: 149 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 tesla publication-title: Magn Reson Med – volume: 38 start-page: 2364 year: 2019 end-page: 2374 article-title: Deep learning for fast and spatially constrained tissue quantification from highly accelerated data in magnetic resonance fingerprinting publication-title: IEEE Trans Med Imaging – volume: 90 start-page: 1518 year: 2023 end-page: 1536 article-title: Bloch simulator–driven deep recurrent neural network for magnetization transfer contrast MR fingerprinting and CEST imaging publication-title: Magn Reson Med – volume: 71 start-page: 1841 year: 2014 end-page: 1853 article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T publication-title: Magn Reson Med – volume: 24 start-page: 1256 year: 2005 end-page: 1266 article-title: An adaptive tissue characterization network for model‐free visualization of dynamic contrast‐enhanced magnetic resonance image data publication-title: IEEE Trans Med Imaging – year: 2023 – volume: 86 start-page: 893 year: 2021 end-page: 906 article-title: Whole‐brain amide CEST imaging at 3T with a steady‐state radial MRI acquisition publication-title: Magn Reson Med – volume: 133 start-page: 36 year: 1998 end-page: 45 article-title: Detection of proton chemical exchange between metabolites and water in biological tissues publication-title: J Magn Reson – volume: 18 start-page: 302 year: 2012 end-page: 306 article-title: Magnetic resonance imaging of glutamate publication-title: Nat Med – year: 2017 – volume: 221 year: 2020 article-title: A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging publication-title: Neuroimage – volume: 32 year: 2021 article-title: Relayed nuclear Overhauser effect weighted (rNOEw) imaging identifies multiple sclerosis publication-title: Neuroimage Clin – volume: 87 start-page: 1529 year: 2022 end-page: 1545 article-title: Deep neural network based CEST and AREX processing: application in imaging a model of Alzheimer's disease at 3 T publication-title: Magn Reson Med – ident: e_1_2_8_66_1 doi: 10.1002/mrm.28411 – ident: e_1_2_8_32_1 doi: 10.1002/mrm.23141 – ident: e_1_2_8_45_1 doi: 10.1002/mrm.29044 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.25995 – ident: e_1_2_8_63_1 doi: 10.1002/mp.12600 – ident: e_1_2_8_4_1 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_8_23_1 doi: 10.1126/sciadv.aba3884 – ident: e_1_2_8_62_1 doi: 10.1002/nbm.4416 – ident: e_1_2_8_33_1 doi: 10.1016/j.jmr.2011.05.001 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.29748 – ident: e_1_2_8_54_1 – ident: e_1_2_8_59_1 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.10651 – ident: e_1_2_8_35_1 doi: 10.1002/mrm.29876 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2013.03.072 – ident: e_1_2_8_43_1 doi: 10.1002/nbm.4940 – ident: e_1_2_8_16_1 doi: 10.1002/nbm.3834 – ident: e_1_2_8_34_1 doi: 10.1002/nbm.3716 – ident: e_1_2_8_42_1 doi: 10.1002/mrm.29520 – ident: e_1_2_8_36_1 doi: 10.1002/mrm.24315 – ident: e_1_2_8_10_1 doi: 10.1038/nm.2615 – volume-title: Paper presented at: The Eleventh International Conference on Learning Representations year: 2022 ident: e_1_2_8_55_1 – ident: e_1_2_8_15_1 doi: 10.1002/nbm.3216 – ident: e_1_2_8_7_1 doi: 10.1038/nm907 – ident: e_1_2_8_2_1 doi: 10.1002/mrm.1910100113 – ident: e_1_2_8_29_1 doi: 10.1002/mrm.28433 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.22761 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.27751 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.28770 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.27514 – ident: e_1_2_8_53_1 – ident: e_1_2_8_13_1 doi: 10.1111/jnc.13771 – ident: e_1_2_8_14_1 doi: 10.1002/nbm.2792 – ident: e_1_2_8_25_1 doi: 10.1016/j.neuroimage.2013.03.047 – ident: e_1_2_8_57_1 doi: 10.1007/BF02551274 – ident: e_1_2_8_30_1 doi: 10.1016/j.nicl.2021.102867 – ident: e_1_2_8_61_1 doi: 10.1109/TMI.2019.2899328 – start-page: 4768 year: 2017 ident: e_1_2_8_60_1 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of the 31st International Conference on Neural Information Processing System – ident: e_1_2_8_19_1 doi: 10.1002/mrm.24520 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.24822 – ident: e_1_2_8_12_1 doi: 10.1126/scitranslmed.aaa7095 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.26100 – ident: e_1_2_8_49_1 doi: 10.1038/s41551-021-00809-7 – volume-title: Neural Networks: a Comprehensive Foundation year: 1998 ident: e_1_2_8_56_1 – ident: e_1_2_8_39_1 doi: 10.1002/mrm.28117 – ident: e_1_2_8_27_1 doi: 10.1002/mrm.25990 – ident: e_1_2_8_52_1 doi: 10.1002/nbm.4954 – ident: e_1_2_8_17_1 doi: 10.1007/s11307-016-0995-0 – ident: e_1_2_8_38_1 doi: 10.1002/mrm.25581 – ident: e_1_2_8_47_1 doi: 10.1002/mrm.28573 – ident: e_1_2_8_58_1 doi: 10.1016/0893-6080(89)90020-8 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.29241 – ident: e_1_2_8_46_1 doi: 10.1002/nbm.4710 – ident: e_1_2_8_64_1 doi: 10.1109/TMI.2005.854517 – ident: e_1_2_8_22_1 doi: 10.1002/nbm.4640 – ident: e_1_2_8_44_1 doi: 10.1002/mrm.29970 – ident: e_1_2_8_65_1 doi: 10.1016/s0730‐725x(01)00222‐3 – ident: e_1_2_8_40_1 doi: 10.1038/s41467‐020‐14874‐0 – ident: e_1_2_8_41_1 doi: 10.1002/mrm.27690 – ident: e_1_2_8_51_1 doi: 10.1002/mrm.29448 – ident: e_1_2_8_3_1 doi: 10.1006/jmre.1998.1440 – ident: e_1_2_8_24_1 doi: 10.1177/0271678X20941264 – ident: e_1_2_8_20_1 doi: 10.1038/nm.3252 – ident: e_1_2_8_37_1 doi: 10.1002/mrm.25795 – ident: e_1_2_8_48_1 doi: 10.1016/j.neuroimage.2020.117165 |
| SSID | ssj0009974 |
| Score | 2.4949884 |
| Snippet | Purpose
To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis... To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN). CEST... Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis... To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1301 |
| SubjectTerms | Adult Algorithms Brain - diagnostic imaging chemical exchange saturation transfer (CEST) Computer Processing and Modeling Correlation analysis Data acquisition Data analysis Feasibility studies Female Healthy Volunteers human brain Humans Image Processing, Computer-Assisted - methods Kolmogorov‐Arnold network (KAN) Lorentzian‐KAN (LKAN) Magnetic resonance imaging Magnetic Resonance Imaging - methods Male multi‐pool Lorentzian fitting (MPLF) Overhauser effect Parameters Reproducibility of Results Spectra Young Adult |
| Title | CEST MRI data analysis using Kolmogorov‐Arnold network (KAN) and Lorentzian‐KAN (LKAN) models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30548 https://www.ncbi.nlm.nih.gov/pubmed/40468586 https://www.proquest.com/docview/3229052694 https://www.proquest.com/docview/3215984218 https://pubmed.ncbi.nlm.nih.gov/PMC12202730 |
| Volume | 94 |
| WOSCitedRecordID | wos001502720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFhAXHuW1UCqDOCyHtIkzjR1xWpWuqLq7qpZW7C3yK6XSboKStgdO_AR-I78E28mmrAoSEpcosceyY8_Yn-zxNwBvY6okmtwZUmoCFBQDkaMMdKpVwlIRCYU-2ASbTPhslh6vwfvlXZiGH6LbcHOW4edrZ-BC1rvXpKGLarFjlRX5LdiIopi7uA0Uj68Zd9OGgpmhm2hSXNIKhXS3K7q6GN1AmDcdJX8HsH4FGj74r7Y_hPst8CSDRlMewZopNuHuuD1a34Q73hdU1Y9B7B98OiHj6SFx7qNEtLQlxLnIn5Gjcr4oz8qqvPr5_cegKsq5JkXjS076R4PJO1tAk1HpWJ--Wd2zUjaV9Ec-zwfeqZ_A6fDgZP9j0EZiCBS6q1mCx9rIMGcJkwI1ZzqSOZcWbKo9qqVSsbbAYy9PQkSjcgurQhkrmyB1xEys46ewXpSFeQ4kQZkadIzETCBFI1KOkdSUsdxiVZb3oL8ckky1NOUuWsY8awiWaWY7L_Od14M3nejXhpvjT0Jby3HNWvOss9ix3LvY6tiD1122NSx3WiIKU146GYv0OFoI1INnjRp0tWCIjrc_6QFfUZBOwJF2r-YU5188eXdE3XZTHNr_9Bry95Zn4-nYv7z4d9GXcI-6AMXeCW4L1i-qS_MKbquri_O62vYGYp9sxrdh48N0eDqyX58PJ78AY-AX-w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V8rzwKBQCBQzisD2E5jGNE4nLqmrV1T6EyiJ6i_xKW2k3Qdm2B078BH4jvwSPk01ZFSQkbpE9VhJ7xv5kj78P4F0cKYmmoEDKjI8iQl8UKH2daZXwTIRCoROb4JNJenycfVyDD8u7MA0_RLfhRpHh5msKcNqQ3rliDZ3X8_fWWzG9ATfRAg0SbvgymFxR7mYNBzNHmmkyXPIKBdFO13R1NboGMa9nSv6OYN0SdPDg_z7-IdxvoSfrN77yCNZMuQF3xu3h-gbcdtmgavEYxN7-pykbHw0YJZAy0RKXMEqSP2HDajavTqq6uvz5_Ue_LquZZmWTTc56w_5k2zbQbFQR79M3633Wypay3sjVOemdxRP4fLA_3Tv0Wy0GXyFdzhJprI0MCp5wKVCnXIeySKWFm2o30lKpWFvosVskAaJRhQVWgYyVLZA65CbW8Sasl1VpngFLUGYGiZOYC4zQiCzFUOqI88KiVV540FuOSa5aonLSy5jlDcVylNvOy13nefC2M_3asHP8yWhrObB5G6CLPCaee1JXRw_edNU2tOi8RJSmuiAbi_VStCDIg6eNH3RvwQCJuT_xIF3xkM6AaLtXa8qzU0ffHUa04RQH9j-di_z9y_Px0dg9PP9309dw93A6HuWjwWT4Au5FJFfsUuK2YP28vjAv4Za6PD9b1K9ctPwCxV4YvA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLVRceJTXQgGDOGwPoXlM40Tismq7otqHqqWVeov8Sqm0m1TZtgdO_AR-I78Ej5NNWRUkJG6RPVYSe8b-ZI-_D-BDFCqJJqdASo2HIkRP5Cg9nWoV81QEQqETm-CTSXJ6mh6twaflXZiaH6LdcKPIcPM1Bbi50PnODWvovJp_tN6KyR1YRxKR6cD6_nRwMroh3U1rFmaONNekuGQW8sOdtvHqenQLZN7Olfwdw7pFaPDw_z7_ETxowCfr197yGNZMsQkb4-Z4fRPuuXxQtXgCYu_gyzEbTw8ZpZAy0VCXMEqTP2PDcjYvz8qqvP75_Ue_KsqZZkWdT856w_5k2zbQbFQS89M363_Wypay3sjVOfGdxVM4GRwc7332GjUGTyFdzxJJpI30cx5zKVAnXAcyT6QFnGo31FKpSFvwsZvHPqJRuYVWvoyULZA64CbS0TPoFGVhXgCLUaYGiZWYCwzRiDTBQOqQ89ziVZ53obcck0w1VOWkmDHLapLlMLOdl7nO68L71vSi5uf4k9HWcmCzJkQXWURM96Svjl1411bb4KITE1GY8opsLNpL0MKgLjyv_aB9C_pI3P1xF5IVD2kNiLh7taY4_-oIvIOQtpwi3_6nc5G_f3k2no7dw8t_N30LG0f7g2x0OBm-gvsh6RW7nLgt6FxWV-Y13FXXl-eL6k0TLr8AmwMZZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEST+MRI+data+analysis+using+Kolmogorov%E2%80%90Arnold+network+%28+KAN+%29+and+Lorentzian+%E2%80%90+KAN+%28+LKAN+%29+models&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Wang%2C+Jiawen&rft.au=Cai%2C+Pei&rft.au=Wang%2C+Ziyan&rft.au=Zhang%2C+Huabin&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=1301&rft.epage=1317&rft_id=info:doi/10.1002%2Fmrm.30548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30548 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |