CEST MRI data analysis using Kolmogorov‐Arnold network (KAN) and Lorentzian‐KAN (LKAN) models

Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 94; číslo 3; s. 1301 - 1317
Hlavní autoři: Wang, Jiawen, Cai, Pei, Wang, Ziyan, Zhang, Huabin, Huang, Jianpan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.09.2025
John Wiley and Sons Inc
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z‐spectra), whereas the remaining two were reserved for testing (51 977 Z‐spectra). The performance of multi‐layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi‐pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel‐wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. Conclusion This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST‐KAN and CEST‐LKAN have the potential to be robust and reliable post‐analysis tools for CEST MRI in clinical settings.
AbstractList Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z‐spectra), whereas the remaining two were reserved for testing (51 977 Z‐spectra). The performance of multi‐layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi‐pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel‐wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. Conclusion This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST‐KAN and CEST‐LKAN have the potential to be robust and reliable post‐analysis tools for CEST MRI in clinical settings.
To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN).PURPOSETo investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN).CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT).METHODSCEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT).The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP.RESULTSThe KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP.This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings.CONCLUSIONThis study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings.
To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN). CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB , water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings.
Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis (CEST‐KAN/CEST‐LKAN). Methods CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z‐spectra), whereas the remaining two were reserved for testing (51 977 Z‐spectra). The performance of multi‐layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi‐pool Lorentzian fitting (MPLF) method in generating ΔB0, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel‐wise correlation analysis also revealed that ΔB0 and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP. Conclusion This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST‐KAN and CEST‐LKAN have the potential to be robust and reliable post‐analysis tools for CEST MRI in clinical settings.
Author Wang, Jiawen
Wang, Ziyan
Huang, Jianpan
Zhang, Huabin
Cai, Pei
AuthorAffiliation 1 Laboratory of Advanced Imaging in Medicine (AIM), Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
AuthorAffiliation_xml – name: 1 Laboratory of Advanced Imaging in Medicine (AIM), Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
Author_xml – sequence: 1
  givenname: Jiawen
  surname: Wang
  fullname: Wang, Jiawen
  organization: The University of Hong Kong
– sequence: 2
  givenname: Pei
  surname: Cai
  fullname: Cai, Pei
  organization: The University of Hong Kong
– sequence: 3
  givenname: Ziyan
  surname: Wang
  fullname: Wang, Ziyan
  organization: The University of Hong Kong
– sequence: 4
  givenname: Huabin
  orcidid: 0000-0002-5170-2753
  surname: Zhang
  fullname: Zhang, Huabin
  organization: The University of Hong Kong
– sequence: 5
  givenname: Jianpan
  orcidid: 0000-0002-4453-8764
  surname: Huang
  fullname: Huang, Jianpan
  email: jphuang@hku.hk
  organization: The University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40468586$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uEzEUhS1URNPCghdAI7FJF9Nee-z5WaEoKlA1AamUteWxPcHFY7f2TKuw4hF4Rp4Ep0kRVLC60r3fOTq65wDtOe80Qi8xHGMActKH_rgARusnaIIZITlhDd1DE6go5AVu6D46iPEKAJqmos_QPgVa1qwuJ0jMTz9dZsuLs0yJQWTCCbuOJmZjNG6VnXvb-5UP_vbn9x-z4LxVmdPDnQ9fs-n57MNREqhs4YN2wzcjXKLSNpsu7m-9V9rG5-hpJ2zUL3bzEH1-e3o5f58vPr47m88WuaQpTC7qQukWuqqsWkFVXSncdnVbA0hGVCtloRg0rCuBUi07wgDaQqZFq3ClC1Ucojdb3-ux7bWSKVIQll8H04uw5l4Y_vfFmS985W85JgRIVUBymO4cgr8ZdRx4b6LU1gqn_Rh5QTBrakpwndDXj9ArP4b0vA1FGmCkbGiiXv0Z6XeWh_cn4GQLyOBjDLrj0gxiMH6T0FiOgW8K5qlgfl9wUhw9UjyY_ovdud8Zq9f_B_nyYrlV_AIMQLWs
CitedBy_id crossref_primary_10_1016_j_mrl_2025_200240
crossref_primary_10_1002_nbm_70082
Cites_doi 10.1002/mrm.28411
10.1002/mrm.23141
10.1002/mrm.29044
10.1002/mrm.25995
10.1002/mp.12600
10.1006/jmre.1999.1956
10.1126/sciadv.aba3884
10.1002/nbm.4416
10.1016/j.jmr.2011.05.001
10.1002/mrm.29748
10.1002/mrm.10651
10.1002/mrm.29876
10.1016/j.neuroimage.2013.03.072
10.1002/nbm.4940
10.1002/nbm.3834
10.1002/nbm.3716
10.1002/mrm.29520
10.1002/mrm.24315
10.1038/nm.2615
10.1002/nbm.3216
10.1038/nm907
10.1002/mrm.1910100113
10.1002/mrm.28433
10.1002/mrm.22761
10.1002/mrm.27751
10.1002/mrm.28770
10.1002/mrm.27514
10.1111/jnc.13771
10.1002/nbm.2792
10.1016/j.neuroimage.2013.03.047
10.1007/BF02551274
10.1016/j.nicl.2021.102867
10.1109/TMI.2019.2899328
10.1002/mrm.24520
10.1002/mrm.24822
10.1126/scitranslmed.aaa7095
10.1002/mrm.26100
10.1038/s41551-021-00809-7
10.1002/mrm.28117
10.1002/mrm.25990
10.1002/nbm.4954
10.1007/s11307-016-0995-0
10.1002/mrm.25581
10.1002/mrm.28573
10.1016/0893-6080(89)90020-8
10.1002/mrm.29241
10.1002/nbm.4710
10.1109/TMI.2005.854517
10.1002/nbm.4640
10.1002/mrm.29970
10.1016/s0730‐725x(01)00222‐3
10.1038/s41467‐020‐14874‐0
10.1002/mrm.27690
10.1002/mrm.29448
10.1006/jmre.1998.1440
10.1177/0271678X20941264
10.1038/nm.3252
10.1002/mrm.25795
10.1016/j.neuroimage.2020.117165
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.30548
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate WANG et al
EISSN 1522-2594
EndPage 1317
ExternalDocumentID PMC12202730
40468586
10_1002_mrm_30548
MRM30548
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: University of Hong Kong
  funderid: 109000487; 109001694; 204610401; 204610519
– fundername: National Natural Science Foundation of China
  funderid: 82402225
– fundername: National Natural Science Foundation of China
  grantid: 82402225
– fundername: University of Hong Kong
  grantid: 204610401
– fundername: University of Hong Kong
  grantid: 204610519
– fundername: University of Hong Kong
  grantid: 109001694
– fundername: University of Hong Kong
  grantid: 109000487
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4468-a83deb0f767ba4d87d1bf8b800c52dbcc3d5095f6044ecf2500b3c95fbd17e3d3
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:05:12 EST 2025
Fri Sep 05 15:59:32 EDT 2025
Sat Nov 29 14:36:17 EST 2025
Mon Jun 30 02:54:33 EDT 2025
Sat Nov 29 07:40:23 EST 2025
Tue Nov 18 21:28:03 EST 2025
Thu Jul 03 09:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords human brain
Kolmogorov‐Arnold network (KAN)
multi‐pool Lorentzian fitting (MPLF)
Lorentzian‐KAN (LKAN)
chemical exchange saturation transfer (CEST)
Language English
License Attribution-NonCommercial-NoDerivs
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4468-a83deb0f767ba4d87d1bf8b800c52dbcc3d5095f6044ecf2500b3c95fbd17e3d3
Notes Jiawen Wang and Pei Cai contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4453-8764
0000-0002-5170-2753
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30548
PMID 40468586
PQID 3229052694
PQPubID 1016391
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12202730
proquest_miscellaneous_3215984218
proquest_journals_3229052694
pubmed_primary_40468586
crossref_citationtrail_10_1002_mrm_30548
crossref_primary_10_1002_mrm_30548
wiley_primary_10_1002_mrm_30548_MRM30548
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2013; 69
2023; 36
2017; 44
2015; 74
2016; 75
2012; 18
2020; 11
2024
2003; 50
2005; 24
2013; 19
2020; 6
2017; 30
2021; 32
2017; 77
2003; 9
2001; 19
2022; 35
2011; 65
2012; 25
2012; 68
2021; 41
2021; 85
2012; 67
1989; 2
2021; 86
2020; 84
1998
2019; 38
2020; 221
2022; 87
2022; 88
1998; 133
2015; 7
2011; 211
2015; 28
2019; 82
2019; 81
1989; 10
2023; 89
2013; 77
2023
2022
2022; 6
2024; 91
2017
2016; 139
2017; 19
2000; 143
2023; 90
2014; 71
2023; 91
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Haykin S (e_1_2_8_56_1) 1998
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Tian Y (e_1_2_8_55_1) 2022
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Lundberg SM (e_1_2_8_60_1) 2017
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 19
  start-page: 1067
  year: 2013
  end-page: 1072
  article-title: In vivo imaging of glucose uptake and metabolism in tumors
  publication-title: Nat Med
– volume: 139
  start-page: 432
  year: 2016
  end-page: 439
  article-title: Mapping the alterations in glutamate with Glu CEST MRI in a mouse model of dopamine deficiency
  publication-title: J Neurochem
– volume: 36
  year: 2023
  article-title: MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification
  publication-title: NMR Biomed
– volume: 30
  year: 2017
  article-title: Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects
  publication-title: NMR Biomed
– volume: 36
  year: 2023
  article-title: Deep learning to reconstruct quasi‐steady‐state chemical exchange saturation transfer from a non‐steady‐state experiment
  publication-title: NMR Biomed
– volume: 44
  start-page: 6209
  year: 2017
  end-page: 6224
  article-title: A parallel MR imaging method using multilayer perceptron
  publication-title: Med Phys
– volume: 41
  start-page: 1013
  year: 2021
  end-page: 1025
  article-title: D‐glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on‐resonance variable delay multiple pulse MRI
  publication-title: J Cereb Blood Flow Metab
– volume: 211
  start-page: 149
  year: 2011
  end-page: 155
  article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian‐line‐fit analysis of z‐spectra
  publication-title: J Magn Reson
– volume: 6
  start-page: 648
  year: 2022
  end-page: 657
  article-title: Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning
  publication-title: Nat Biomed Eng
– year: 2024
– volume: 81
  start-page: 69
  year: 2019
  end-page: 78
  article-title: Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian line‐shape fitting CEST method
  publication-title: Magn Reson Med
– volume: 89
  start-page: 1543
  year: 2023
  end-page: 1556
  article-title: DeepCEST 7 T: fast and homogeneous mapping of 7 T CEST MRI parameters and their uncertainty quantification
  publication-title: Magn Reson Med
– volume: 11
  start-page: 1072
  year: 2020
  article-title: In vivo imaging of phosphocreatine with artificial neural networks
  publication-title: Nat Commun
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math Control Signals Syste
– volume: 9
  start-page: 1085
  year: 2003
  end-page: 1090
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nat Med
– volume: 85
  start-page: 2040
  year: 2021
  end-page: 2054
  article-title: Unsupervised learning for magnetization transfer contrast MR fingerprinting: application to CEST and nuclear Overhauser enhancement imaging
  publication-title: Magn Reson Med
– volume: 89
  start-page: 233
  year: 2023
  end-page: 249
  article-title: CEST MR fingerprinting (CEST‐MRF) for brain tumor quantification using EPI readout and deep learning reconstruction
  publication-title: Magn Reson Med
– volume: 77
  start-page: 114
  year: 2013
  end-page: 124
  article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7 T
  publication-title: Neuroimage
– volume: 84
  start-page: 450
  year: 2020
  end-page: 466
  article-title: DeepCEST 3T: robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T
  publication-title: Magn Reson Med
– volume: 6
  year: 2020
  article-title: Altered d‐glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose‐enhanced MRI
  publication-title: Sci Adv
– volume: 75
  start-page: 1630
  year: 2016
  end-page: 1639
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 tesla
  publication-title: Magn Reson Med
– volume: 82
  start-page: 622
  year: 2019
  end-page: 632
  article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T
  publication-title: Magn Reson Med
– volume: 91
  start-page: 51
  year: 2023
  end-page: 60
  article-title: Creatine mapping of the brain at 3T by CEST MRI
  publication-title: Magn Reson Med
– year: 1998
– volume: 77
  start-page: 196
  year: 2017
  end-page: 208
  article-title: Downfield‐NOE‐suppressed amide‐CEST‐MRI at 7 tesla provides a unique contrast in human glioblastoma
  publication-title: Magn Reson Med
– volume: 30
  year: 2017
  article-title: Investigation of the contribution of total creatine to the CEST Z‐spectrum of brain using a knockout mouse model
  publication-title: NMR Biomed
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 10
  start-page: 135
  year: 1989
  end-page: 144
  article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo
  publication-title: Magn Reson Med
– volume: 19
  start-page: 225
  year: 2017
  end-page: 232
  article-title: Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness
  publication-title: Mol Imaging Biol
– start-page: 4768
  year: 2017
  end-page: 4777
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing System
– volume: 75
  start-page: 88
  year: 2016
  end-page: 96
  article-title: Magnetization transfer contrast‐suppressed imaging of amide proton transfer and relayed nuclear overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T
  publication-title: Magn Reson Med
– volume: 91
  start-page: 1908
  year: 2024
  end-page: 1922
  article-title: Machine learning‐based amide proton transfer imaging using partially synthetic training data
  publication-title: Magn Reson Med
– year: 2022
– volume: 77
  start-page: 262
  year: 2013
  end-page: 267
  article-title: Imaging of glutamate in the spinal cord using GluCEST
  publication-title: Neuroimage
– volume: 68
  start-page: 1764
  year: 2012
  end-page: 1773
  article-title: Natural D‐glucose as a biodegradable MRI contrast agent for detecting cancer
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1556
  year: 2015
  end-page: 1563
  article-title: Dynamic glucose enhanced (DGE) MRI for combined imaging of blood‐brain barrier break down and increased blood volume in brain cancer
  publication-title: Magn Reson Med
– volume: 85
  start-page: 298
  year: 2021
  end-page: 308
  article-title: qMTNet: accelerated quantitative magnetization transfer imaging with artificial neural networks
  publication-title: Magn Reson Med
– volume: 35
  year: 2022
  article-title: Sensitivity schemes for dynamic glucose‐enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3 T
  publication-title: NMR Biomed
– volume: 36
  year: 2023
  article-title: Global deep learning optimization of chemical exchange saturation transfer magnetic resonance fingerprinting acquisition schedule
  publication-title: NMR Biomed
– volume: 19
  start-page: 51
  year: 2001
  end-page: 57
  article-title: Classification of signal‐time curves from dynamic MR mammography by neural networks
  publication-title: Magn Reson Imaging
– volume: 28
  start-page: 1
  year: 2015
  end-page: 8
  article-title: CEST signal at 2 ppm (CEST@ 2ppm) from Z‐spectral fitting correlates with creatine distribution in brain tumor
  publication-title: NMR Biomed
– volume: 67
  start-page: 1579
  year: 2012
  end-page: 1589
  article-title: In vivo three‐dimensional whole‐brain pulsed steady‐state chemical exchange saturation transfer at 7 T
  publication-title: Magn Reson Med
– volume: 88
  start-page: 546
  year: 2022
  end-page: 574
  article-title: Review and consensus recommendations on clinical APT‐weighted imaging approaches at 3T: application to brain tumors
  publication-title: Magn Reson Med
– volume: 25
  start-page: 1305
  year: 2012
  end-page: 1309
  article-title: Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI
  publication-title: NMR Biomed
– volume: 35
  year: 2022
  article-title: Rapid MR relaxometry using deep learning: an overview of current techniques and emerging trends
  publication-title: NMR Biomed
– volume: 69
  start-page: 760
  year: 2013
  end-page: 770
  article-title: MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear Overhauser effect at 9.4 T
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3901
  year: 2019
  end-page: 3914
  article-title: DeepCEST: 9.4 T chemical exchange saturation transfer MRI contrast predicted from 3 T data–a proof of concept study
  publication-title: Magn Reson Med
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– volume: 7
  start-page: 309ra161
  year: 2015
  article-title: Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy
  publication-title: Sci Transl Med
– volume: 85
  start-page: 254
  year: 2021
  end-page: 267
  article-title: Relayed nuclear Overhauser enhancement imaging with magnetization transfer contrast suppression at 3 T
  publication-title: Magn Reson Med
– volume: 65
  start-page: 927
  year: 2011
  end-page: 948
  article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't?
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1120
  year: 2003
  end-page: 1126
  article-title: Amide proton transfer (APT) contrast for imaging of brain tumors
  publication-title: Magn Reson Med
– volume: 75
  start-page: 137
  year: 2016
  end-page: 149
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 tesla
  publication-title: Magn Reson Med
– volume: 38
  start-page: 2364
  year: 2019
  end-page: 2374
  article-title: Deep learning for fast and spatially constrained tissue quantification from highly accelerated data in magnetic resonance fingerprinting
  publication-title: IEEE Trans Med Imaging
– volume: 90
  start-page: 1518
  year: 2023
  end-page: 1536
  article-title: Bloch simulator–driven deep recurrent neural network for magnetization transfer contrast MR fingerprinting and CEST imaging
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1841
  year: 2014
  end-page: 1853
  article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T
  publication-title: Magn Reson Med
– volume: 24
  start-page: 1256
  year: 2005
  end-page: 1266
  article-title: An adaptive tissue characterization network for model‐free visualization of dynamic contrast‐enhanced magnetic resonance image data
  publication-title: IEEE Trans Med Imaging
– year: 2023
– volume: 86
  start-page: 893
  year: 2021
  end-page: 906
  article-title: Whole‐brain amide CEST imaging at 3T with a steady‐state radial MRI acquisition
  publication-title: Magn Reson Med
– volume: 133
  start-page: 36
  year: 1998
  end-page: 45
  article-title: Detection of proton chemical exchange between metabolites and water in biological tissues
  publication-title: J Magn Reson
– volume: 18
  start-page: 302
  year: 2012
  end-page: 306
  article-title: Magnetic resonance imaging of glutamate
  publication-title: Nat Med
– year: 2017
– volume: 221
  year: 2020
  article-title: A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging
  publication-title: Neuroimage
– volume: 32
  year: 2021
  article-title: Relayed nuclear Overhauser effect weighted (rNOEw) imaging identifies multiple sclerosis
  publication-title: Neuroimage Clin
– volume: 87
  start-page: 1529
  year: 2022
  end-page: 1545
  article-title: Deep neural network based CEST and AREX processing: application in imaging a model of Alzheimer's disease at 3 T
  publication-title: Magn Reson Med
– ident: e_1_2_8_66_1
  doi: 10.1002/mrm.28411
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.23141
– ident: e_1_2_8_45_1
  doi: 10.1002/mrm.29044
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.25995
– ident: e_1_2_8_63_1
  doi: 10.1002/mp.12600
– ident: e_1_2_8_4_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_8_23_1
  doi: 10.1126/sciadv.aba3884
– ident: e_1_2_8_62_1
  doi: 10.1002/nbm.4416
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jmr.2011.05.001
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.29748
– ident: e_1_2_8_54_1
– ident: e_1_2_8_59_1
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.10651
– ident: e_1_2_8_35_1
  doi: 10.1002/mrm.29876
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2013.03.072
– ident: e_1_2_8_43_1
  doi: 10.1002/nbm.4940
– ident: e_1_2_8_16_1
  doi: 10.1002/nbm.3834
– ident: e_1_2_8_34_1
  doi: 10.1002/nbm.3716
– ident: e_1_2_8_42_1
  doi: 10.1002/mrm.29520
– ident: e_1_2_8_36_1
  doi: 10.1002/mrm.24315
– ident: e_1_2_8_10_1
  doi: 10.1038/nm.2615
– volume-title: Paper presented at: The Eleventh International Conference on Learning Representations
  year: 2022
  ident: e_1_2_8_55_1
– ident: e_1_2_8_15_1
  doi: 10.1002/nbm.3216
– ident: e_1_2_8_7_1
  doi: 10.1038/nm907
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.1910100113
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.28433
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.22761
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.27751
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.28770
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.27514
– ident: e_1_2_8_53_1
– ident: e_1_2_8_13_1
  doi: 10.1111/jnc.13771
– ident: e_1_2_8_14_1
  doi: 10.1002/nbm.2792
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2013.03.047
– ident: e_1_2_8_57_1
  doi: 10.1007/BF02551274
– ident: e_1_2_8_30_1
  doi: 10.1016/j.nicl.2021.102867
– ident: e_1_2_8_61_1
  doi: 10.1109/TMI.2019.2899328
– start-page: 4768
  year: 2017
  ident: e_1_2_8_60_1
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing System
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.24520
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.24822
– ident: e_1_2_8_12_1
  doi: 10.1126/scitranslmed.aaa7095
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.26100
– ident: e_1_2_8_49_1
  doi: 10.1038/s41551-021-00809-7
– volume-title: Neural Networks: a Comprehensive Foundation
  year: 1998
  ident: e_1_2_8_56_1
– ident: e_1_2_8_39_1
  doi: 10.1002/mrm.28117
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.25990
– ident: e_1_2_8_52_1
  doi: 10.1002/nbm.4954
– ident: e_1_2_8_17_1
  doi: 10.1007/s11307-016-0995-0
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.25581
– ident: e_1_2_8_47_1
  doi: 10.1002/mrm.28573
– ident: e_1_2_8_58_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.29241
– ident: e_1_2_8_46_1
  doi: 10.1002/nbm.4710
– ident: e_1_2_8_64_1
  doi: 10.1109/TMI.2005.854517
– ident: e_1_2_8_22_1
  doi: 10.1002/nbm.4640
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.29970
– ident: e_1_2_8_65_1
  doi: 10.1016/s0730‐725x(01)00222‐3
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467‐020‐14874‐0
– ident: e_1_2_8_41_1
  doi: 10.1002/mrm.27690
– ident: e_1_2_8_51_1
  doi: 10.1002/mrm.29448
– ident: e_1_2_8_3_1
  doi: 10.1006/jmre.1998.1440
– ident: e_1_2_8_24_1
  doi: 10.1177/0271678X20941264
– ident: e_1_2_8_20_1
  doi: 10.1038/nm.3252
– ident: e_1_2_8_37_1
  doi: 10.1002/mrm.25795
– ident: e_1_2_8_48_1
  doi: 10.1016/j.neuroimage.2020.117165
SSID ssj0009974
Score 2.4949884
Snippet Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis...
To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN). CEST...
Purpose To investigate the potential of using Kolmogorov‐Arnold Network (KAN) and propose Lorentzian‐KAN (LKAN) for CEST MRI data analysis...
To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1301
SubjectTerms Adult
Algorithms
Brain - diagnostic imaging
chemical exchange saturation transfer (CEST)
Computer Processing and Modeling
Correlation analysis
Data acquisition
Data analysis
Feasibility studies
Female
Healthy Volunteers
human brain
Humans
Image Processing, Computer-Assisted - methods
Kolmogorov‐Arnold network (KAN)
Lorentzian‐KAN (LKAN)
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
multi‐pool Lorentzian fitting (MPLF)
Overhauser effect
Parameters
Reproducibility of Results
Spectra
Young Adult
Title CEST MRI data analysis using Kolmogorov‐Arnold network (KAN) and Lorentzian‐KAN (LKAN) models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30548
https://www.ncbi.nlm.nih.gov/pubmed/40468586
https://www.proquest.com/docview/3229052694
https://www.proquest.com/docview/3215984218
https://pubmed.ncbi.nlm.nih.gov/PMC12202730
Volume 94
WOSCitedRecordID wos001502720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFhAXHuW1UCqDOCyHtIkzjR1xWpWuqLq7qpZW7C3yK6XSboKStgdO_AR-I78E28mmrAoSEpcosceyY8_Yn-zxNwBvY6okmtwZUmoCFBQDkaMMdKpVwlIRCYU-2ASbTPhslh6vwfvlXZiGH6LbcHOW4edrZ-BC1rvXpKGLarFjlRX5LdiIopi7uA0Uj68Zd9OGgpmhm2hSXNIKhXS3K7q6GN1AmDcdJX8HsH4FGj74r7Y_hPst8CSDRlMewZopNuHuuD1a34Q73hdU1Y9B7B98OiHj6SFx7qNEtLQlxLnIn5Gjcr4oz8qqvPr5_cegKsq5JkXjS076R4PJO1tAk1HpWJ--Wd2zUjaV9Ec-zwfeqZ_A6fDgZP9j0EZiCBS6q1mCx9rIMGcJkwI1ZzqSOZcWbKo9qqVSsbbAYy9PQkSjcgurQhkrmyB1xEys46ewXpSFeQ4kQZkadIzETCBFI1KOkdSUsdxiVZb3oL8ckky1NOUuWsY8awiWaWY7L_Od14M3nejXhpvjT0Jby3HNWvOss9ix3LvY6tiD1122NSx3WiIKU146GYv0OFoI1INnjRp0tWCIjrc_6QFfUZBOwJF2r-YU5188eXdE3XZTHNr_9Bry95Zn4-nYv7z4d9GXcI-6AMXeCW4L1i-qS_MKbquri_O62vYGYp9sxrdh48N0eDqyX58PJ78AY-AX-w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V8rzwKBQCBQzisD2E5jGNE4nLqmrV1T6EyiJ6i_xKW2k3Qdm2B078BH4jvwSPk01ZFSQkbpE9VhJ7xv5kj78P4F0cKYmmoEDKjI8iQl8UKH2daZXwTIRCoROb4JNJenycfVyDD8u7MA0_RLfhRpHh5msKcNqQ3rliDZ3X8_fWWzG9ATfRAg0SbvgymFxR7mYNBzNHmmkyXPIKBdFO13R1NboGMa9nSv6OYN0SdPDg_z7-IdxvoSfrN77yCNZMuQF3xu3h-gbcdtmgavEYxN7-pykbHw0YJZAy0RKXMEqSP2HDajavTqq6uvz5_Ue_LquZZmWTTc56w_5k2zbQbFQR79M3633Wypay3sjVOemdxRP4fLA_3Tv0Wy0GXyFdzhJprI0MCp5wKVCnXIeySKWFm2o30lKpWFvosVskAaJRhQVWgYyVLZA65CbW8Sasl1VpngFLUGYGiZOYC4zQiCzFUOqI88KiVV540FuOSa5aonLSy5jlDcVylNvOy13nefC2M_3asHP8yWhrObB5G6CLPCaee1JXRw_edNU2tOi8RJSmuiAbi_VStCDIg6eNH3RvwQCJuT_xIF3xkM6AaLtXa8qzU0ffHUa04RQH9j-di_z9y_Px0dg9PP9309dw93A6HuWjwWT4Au5FJFfsUuK2YP28vjAv4Za6PD9b1K9ctPwCxV4YvA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLVRceJTXQgGDOGwPoXlM40Tismq7otqHqqWVeov8Sqm0m1TZtgdO_AR-I78Ej5NNWRUkJG6RPVYSe8b-ZI-_D-BDFCqJJqdASo2HIkRP5Cg9nWoV81QEQqETm-CTSXJ6mh6twaflXZiaH6LdcKPIcPM1Bbi50PnODWvovJp_tN6KyR1YRxKR6cD6_nRwMroh3U1rFmaONNekuGQW8sOdtvHqenQLZN7Olfwdw7pFaPDw_z7_ETxowCfr197yGNZMsQkb4-Z4fRPuuXxQtXgCYu_gyzEbTw8ZpZAy0VCXMEqTP2PDcjYvz8qqvP75_Ue_KsqZZkWdT856w_5k2zbQbFQS89M363_Wypay3sjVOfGdxVM4GRwc7332GjUGTyFdzxJJpI30cx5zKVAnXAcyT6QFnGo31FKpSFvwsZvHPqJRuYVWvoyULZA64CbS0TPoFGVhXgCLUaYGiZWYCwzRiDTBQOqQ89ziVZ53obcck0w1VOWkmDHLapLlMLOdl7nO68L71vSi5uf4k9HWcmCzJkQXWURM96Svjl1411bb4KITE1GY8opsLNpL0MKgLjyv_aB9C_pI3P1xF5IVD2kNiLh7taY4_-oIvIOQtpwi3_6nc5G_f3k2no7dw8t_N30LG0f7g2x0OBm-gvsh6RW7nLgt6FxWV-Y13FXXl-eL6k0TLr8AmwMZZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEST+MRI+data+analysis+using+Kolmogorov%E2%80%90Arnold+network+%28+KAN+%29+and+Lorentzian+%E2%80%90+KAN+%28+LKAN+%29+models&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Wang%2C+Jiawen&rft.au=Cai%2C+Pei&rft.au=Wang%2C+Ziyan&rft.au=Zhang%2C+Huabin&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=1301&rft.epage=1317&rft_id=info:doi/10.1002%2Fmrm.30548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon