Efficient assembly consensus algorithms for divergent contig sets

Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational biology and chemistry Ročník 93; s. 107516
Hlavní autoři: Chateau, Annie, Davot, Tom, Lafond, Manuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2021
Elsevier
Témata:
ISSN:1476-9271, 1476-928X, 1476-928X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-9271
1476-928X
1476-928X
DOI:10.1016/j.compbiolchem.2021.107516