The CHIME Fast Radio Burst Project: System Overview
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400-800 MHz band. CHIME is composed of four 20 m × 100 m semicylindrical paraboloid reflectors, each of which has 256 dual-polarization feeds suspended along its axis, giving it a 200 d...
Gespeichert in:
| Veröffentlicht in: | The Astrophysical journal Jg. 863; H. 1; S. 48 - 63 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
The American Astronomical Society
10.08.2018
IOP Publishing |
| Schlagworte: | |
| ISSN: | 0004-637X, 1538-4357 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400-800 MHz band. CHIME is composed of four 20 m × 100 m semicylindrical paraboloid reflectors, each of which has 256 dual-polarization feeds suspended along its axis, giving it a 200 deg2 field of view. This, combined with wide bandwidth, high sensitivity, and a powerful correlator, makes CHIME an excellent instrument for the detection of fast radio bursts (FRBs). The CHIME Fast Radio Burst Project (CHIME/FRB) will search beam-formed, high time and frequency resolution data in real time for FRBs in the CHIME field of view. Here we describe the CHIME/FRB back end, including the real-time FRB search and detection software pipeline, as well as the planned offline analyses. We estimate a CHIME/FRB detection rate of 2-42 FRBs sky-1 day-1 normalizing to the rate estimated at 1.4 GHz by Vander Wiel et al. Likely science outcomes of CHIME/FRB are also discussed. CHIME/FRB is currently operational in a commissioning phase, with science operations expected to commence in the latter half of 2018. |
|---|---|
| Bibliographie: | AAS10216 Instrumentation, Software, Laboratory Astrophysics, and Data ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0004-637X 1538-4357 |
| DOI: | 10.3847/1538-4357/aad188 |