The digital mirror Langmuir probe: Field programmable gate array implementation of real-time Langmuir probe biasing

High bandwidth, high spatial resolution measurements of electron temperature, density, and plasma potential are valuable for resolving turbulence in the boundary plasma of tokamaks. While conventional Langmuir probes can provide such measurements, either their temporal or spatial resolution is limit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Review of scientific instruments Ročník 90; číslo 8; s. 083504
Hlavní autoři: Vincent, C, McCarthy, W, Golfinopoulos, T, LaBombard, B, Sharples, R, Lovell, J, Naylor, G, Hall, S, Harrison, J, Kuang, A Q
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.08.2019
ISSN:1089-7623, 1089-7623
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:High bandwidth, high spatial resolution measurements of electron temperature, density, and plasma potential are valuable for resolving turbulence in the boundary plasma of tokamaks. While conventional Langmuir probes can provide such measurements, either their temporal or spatial resolution is limited: the former by the sweep rate necessary for obtaining I-V characteristics and the latter by the need to use multiple electrodes, as is the case in triple and double probe configurations. The Mirror Langmuir Probe (MLP) bias technique overcomes these limitations by rapidly switching the voltage on a single electrode cycling between three bias states, each dynamically optimized for the local plasma conditions. The MLP system on Alcator C-Mod used analog circuitry to perform this function, measuring T , V , and I at 1.1 MSPS. Recently, a new prototype digital MLP controller has been implemented on a Red Pitaya Field Programmable Gate Array (FPGA) board which reproduces the functionality of the original controller and performs all data acquisition. There is also the potential to provide the plasma parameters externally for use with feedback control systems. The use of FPGA technology means the system is readily customizable at a fraction of the development time and implementation cost. A second Red Pitaya was used to test the MLP by simulating the current response of a physical probe using C-Mod experimental measurements. This project is available as a git repository to facilitate extensibility (e.g., real-time control outputs and more voltage states) and scalability through collaboration.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7623
1089-7623
DOI:10.1063/1.5109834