Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation
► Formulation of mixed integer stochastic optimization (MISO) problems. ► Retrospective optimization using dynamic simplex interpolation (RODSI). ► Global convergence of RODSI algorithms for stochastic “convex” systems. ► Numerical analysis of RODSI performance. We propose a family of retrospective...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 217; číslo 1; s. 141 - 148 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
16.02.2012
Elsevier Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | ► Formulation of mixed integer stochastic optimization (MISO) problems. ► Retrospective optimization using dynamic simplex interpolation (RODSI). ► Global convergence of RODSI algorithms for stochastic “convex” systems. ► Numerical analysis of RODSI performance.
We propose a family of retrospective optimization (RO) algorithms for optimizing stochastic systems with both integer and continuous decision variables. The algorithms are continuous search procedures embedded in a RO framework using dynamic simplex interpolation (RODSI). By decreasing dimensions (corresponding to the continuous variables) of simplex, the retrospective solutions become closer to an optimizer of the objective function. We present convergence results of RODSI algorithms for stochastic “convex” systems. Numerical results show that a simple implementation of RODSI algorithms significantly outperforms some random search algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2011.08.020 |