Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation

► Formulation of mixed integer stochastic optimization (MISO) problems. ► Retrospective optimization using dynamic simplex interpolation (RODSI). ► Global convergence of RODSI algorithms for stochastic “convex” systems. ► Numerical analysis of RODSI performance. We propose a family of retrospective...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 217; číslo 1; s. 141 - 148
Hlavní autor: Wang, Honggang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 16.02.2012
Elsevier
Elsevier Sequoia S.A
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:► Formulation of mixed integer stochastic optimization (MISO) problems. ► Retrospective optimization using dynamic simplex interpolation (RODSI). ► Global convergence of RODSI algorithms for stochastic “convex” systems. ► Numerical analysis of RODSI performance. We propose a family of retrospective optimization (RO) algorithms for optimizing stochastic systems with both integer and continuous decision variables. The algorithms are continuous search procedures embedded in a RO framework using dynamic simplex interpolation (RODSI). By decreasing dimensions (corresponding to the continuous variables) of simplex, the retrospective solutions become closer to an optimizer of the objective function. We present convergence results of RODSI algorithms for stochastic “convex” systems. Numerical results show that a simple implementation of RODSI algorithms significantly outperforms some random search algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2011.08.020