Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem

In this paper, we consider problem (P) of minimizing a quadratic function q(x)= xtQx + ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 109; číslo 1; s. 55 - 68
Hlavní autoři: Billionnet, Alain, Elloumi, Sourour
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer 01.01.2007
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider problem (P) of minimizing a quadratic function q(x)= xtQx + ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q + diag(u)) is positive semidefinite. Then, using the fact that xi2 = xi, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0637-9