Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem

In this paper, we consider problem (P) of minimizing a quadratic function q(x)= xtQx + ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 109; H. 1; S. 55 - 68
Hauptverfasser: Billionnet, Alain, Elloumi, Sourour
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer 01.01.2007
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider problem (P) of minimizing a quadratic function q(x)= xtQx + ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q + diag(u)) is positive semidefinite. Then, using the fact that xi2 = xi, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved. [PUBLICATION ABSTRACT]
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0637-9