Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem

In this paper, we consider problem (P) of minimizing a quadratic function q(x)= xtQx + ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 109; číslo 1; s. 55 - 68
Hlavní autori: Billionnet, Alain, Elloumi, Sourour
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer 01.01.2007
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider problem (P) of minimizing a quadratic function q(x)= xtQx + ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q + diag(u)) is positive semidefinite. Then, using the fact that xi2 = xi, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved. [PUBLICATION ABSTRACT]
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0637-9