Evaluating the quality of scenarios of short-term wind power generation

► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 96; S. 12 - 20
Hauptverfasser: Pinson, P., Girard, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2012
Elsevier
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises. Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools.
AbstractList Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools.
► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises. Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools.
Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools
Author Pinson, P.
Girard, R.
Author_xml – sequence: 1
  givenname: P.
  surname: Pinson
  fullname: Pinson, P.
  email: pp@imm.dtu.dk
  organization: Technical University of Denmark, Dept. of Informatics and Mathematical Modelling, Denmark
– sequence: 2
  givenname: R.
  surname: Girard
  fullname: Girard, R.
  organization: Mines ParisTech, Centre for Energy and Processes, Sophia-Antipolis, France
BackLink https://minesparis-psl.hal.science/hal-00654836$$DView record in HAL
BookMark eNqFkUFrGzEQhUVIIU6avxD22B7WHWm12l3ooSGkScHQS3sWY-2sLbOWHEl28L-PNm4uvRgGhB7fm2HmXbNL5x0xdsdhzoGrb5s57shRWB3nAjif5wKQF2zG20aUHeftJZtBBaoUindX7DrGDQAILmDGnh4POO4xWbcq0pqKlz2ONh0LPxTRkMNgfXz_rH1IZaKwLV6t64udf6VQrKa52ezdZ_ZpwDHS7b_3hv39-fjn4blc_H769XC_KI2UdSrVEjpOfYPDEqXqhBBD1ZFEajlQ03d9DdK0Dces9oNAFK2pcbkUYLIAqrphX0991zjqXbBbDEft0ern-4WeNABVy7ZSB57ZLyd2F_zLnmLSW5uXGkd05PdRC5jOUAspz6JcNVw2nVDiPAqVbHklqiqj30-oCT7GQIM2Nr2fKwW0Y0b1lKDe6I8E9ZSgzpUTzHb1n_1j4bPGHycj5SQOloKOxpIz1NtAJune23Mt3gAmWrsd
CitedBy_id crossref_primary_10_1109_TPWRS_2016_2598760
crossref_primary_10_1002_er_6826
crossref_primary_10_1016_j_ijforecast_2021_05_013
crossref_primary_10_1371_journal_pcbi_1008618
crossref_primary_10_1109_TSTE_2013_2253140
crossref_primary_10_1109_TPWRS_2013_2286094
crossref_primary_10_1016_j_ijforecast_2020_03_007
crossref_primary_10_1109_TSTE_2022_3191330
crossref_primary_10_1002_we_2383
crossref_primary_10_1016_j_ijepes_2019_105388
crossref_primary_10_3390_en9100800
crossref_primary_10_1109_TSTE_2019_2920085
crossref_primary_10_1016_j_apenergy_2023_122425
crossref_primary_10_1049_iet_gtd_2017_1320
crossref_primary_10_1016_j_apenergy_2022_119642
crossref_primary_10_1016_j_energy_2022_124969
crossref_primary_10_1016_j_rser_2014_01_033
crossref_primary_10_1002_qj_2906
crossref_primary_10_1002_we_1571
crossref_primary_10_1016_j_compchemeng_2022_107923
crossref_primary_10_1109_TPWRS_2018_2794541
crossref_primary_10_1109_TPWRS_2017_2737322
crossref_primary_10_1109_TSTE_2015_2497698
crossref_primary_10_1109_TPWRS_2018_2838050
crossref_primary_10_1146_annurev_statistics_062713_085831
crossref_primary_10_1016_j_epsr_2022_108593
crossref_primary_10_1029_2022MS003381
crossref_primary_10_1088_1755_1315_170_4_042038
crossref_primary_10_1016_j_apenergy_2018_03_082
crossref_primary_10_1109_TPWRS_2023_3313776
crossref_primary_10_5194_npg_27_349_2020
crossref_primary_10_3390_en16155600
crossref_primary_10_1088_1742_6596_1222_1_012040
crossref_primary_10_1109_JETCAS_2023_3291145
crossref_primary_10_1002_we_1680
crossref_primary_10_1049_rpg2_70096
crossref_primary_10_1049_iet_gtd_2018_6331
crossref_primary_10_1016_j_apenergy_2014_02_004
crossref_primary_10_1016_j_apenergy_2013_10_009
crossref_primary_10_1002_we_2497
crossref_primary_10_1007_s10479_022_04611_9
crossref_primary_10_1002_we_2129
crossref_primary_10_1109_ACCESS_2018_2875936
crossref_primary_10_1002_we_2407
crossref_primary_10_1109_TSTE_2017_2782089
crossref_primary_10_1016_j_ijepes_2021_106955
crossref_primary_10_1007_s40313_016_0296_5
crossref_primary_10_1016_j_solener_2017_11_067
crossref_primary_10_1109_TSG_2013_2280650
crossref_primary_10_1109_TSG_2024_3423321
crossref_primary_10_1002_qj_2009
crossref_primary_10_1016_j_solener_2021_07_010
crossref_primary_10_1080_15325008_2017_1290163
crossref_primary_10_1175_MWR_D_16_0351_1
crossref_primary_10_1016_j_energy_2019_116514
crossref_primary_10_1109_TPWRS_2018_2859367
crossref_primary_10_3390_en10010140
crossref_primary_10_1016_j_ijepes_2024_110227
crossref_primary_10_1016_j_epsr_2021_107722
crossref_primary_10_1002_qj_4701
crossref_primary_10_1002_tee_22272
crossref_primary_10_1007_s10287_019_00349_1
crossref_primary_10_1109_TSTE_2013_2256807
crossref_primary_10_1016_j_apenergy_2018_06_051
crossref_primary_10_1016_j_ijforecast_2022_02_011
crossref_primary_10_1029_2018WR022601
crossref_primary_10_1016_j_apenergy_2020_114986
crossref_primary_10_1109_TSG_2017_2763827
crossref_primary_10_1016_j_energy_2016_11_103
crossref_primary_10_1109_TPWRS_2016_2562718
crossref_primary_10_1016_j_apenergy_2022_118906
crossref_primary_10_1016_j_segan_2024_101602
crossref_primary_10_1016_j_ejor_2014_08_026
crossref_primary_10_1109_ACCESS_2019_2899404
crossref_primary_10_1109_TII_2021_3098259
crossref_primary_10_1109_TPWRS_2015_2430282
crossref_primary_10_1002_qj_3983
crossref_primary_10_1016_j_apenergy_2017_11_067
crossref_primary_10_1016_j_ijforecast_2022_04_004
crossref_primary_10_1016_j_energy_2021_120379
crossref_primary_10_1002_env_2887
crossref_primary_10_1016_j_apenergy_2020_115801
crossref_primary_10_1016_j_renene_2016_05_037
crossref_primary_10_1109_JSAC_2019_2952182
crossref_primary_10_1016_j_apenergy_2023_121370
crossref_primary_10_1016_j_apenergy_2016_03_021
crossref_primary_10_1002_er_6340
crossref_primary_10_5194_ascmo_11_23_2025
crossref_primary_10_1080_10618600_2014_977447
crossref_primary_10_1109_TPWRS_2020_3033999
crossref_primary_10_1016_j_ijepes_2014_03_060
crossref_primary_10_1109_TPWRS_2022_3170992
crossref_primary_10_1002_we_1496
crossref_primary_10_1016_j_apenergy_2018_09_044
crossref_primary_10_1109_TSTE_2015_2411252
crossref_primary_10_1049_iet_gtd_2019_1536
crossref_primary_10_1109_TPWRS_2016_2574645
crossref_primary_10_1002_2050_7038_12028
crossref_primary_10_1175_MWR_D_14_00269_1
crossref_primary_10_1007_s00202_025_03108_5
crossref_primary_10_1007_s40866_023_00175_0
crossref_primary_10_1016_j_apenergy_2016_05_025
crossref_primary_10_1016_j_apenergy_2018_09_168
crossref_primary_10_1109_TEC_2013_2282992
crossref_primary_10_3390_su16062354
crossref_primary_10_1002_2017WR020684
crossref_primary_10_1016_j_energy_2021_122056
crossref_primary_10_3390_en10091402
crossref_primary_10_1016_j_eneco_2024_107890
crossref_primary_10_1016_j_ijepes_2023_109552
crossref_primary_10_1002_qj_3800
crossref_primary_10_1109_TSTE_2023_3325202
crossref_primary_10_1007_s12667_020_00408_6
crossref_primary_10_1016_j_apenergy_2013_03_041
crossref_primary_10_1016_j_apenergy_2025_125674
crossref_primary_10_1002_met_70094
crossref_primary_10_1214_13_STS445
crossref_primary_10_1016_j_apenergy_2016_08_144
crossref_primary_10_1016_j_ijforecast_2015_03_001
crossref_primary_10_1109_TPWRS_2014_2355204
crossref_primary_10_1007_s12667_017_0255_7
crossref_primary_10_1002_we_1872
crossref_primary_10_3390_pr10020330
crossref_primary_10_1016_j_geoen_2023_212225
crossref_primary_10_1016_j_ijforecast_2019_11_006
crossref_primary_10_3390_en16227622
crossref_primary_10_1016_j_apenergy_2020_115992
crossref_primary_10_1016_j_rser_2018_07_042
crossref_primary_10_1016_j_rser_2018_05_056
crossref_primary_10_1016_j_apenergy_2020_115357
crossref_primary_10_1016_j_energy_2025_135138
crossref_primary_10_1002_int_22864
crossref_primary_10_1007_s10479_022_04913_y
crossref_primary_10_1002_wrcr_20542
crossref_primary_10_1029_2018WR024028
crossref_primary_10_1016_j_eneco_2023_106602
crossref_primary_10_1109_TSG_2018_2817284
crossref_primary_10_1109_TSG_2020_3047759
crossref_primary_10_1016_j_apenergy_2024_123241
crossref_primary_10_1109_TIA_2023_3344544
crossref_primary_10_1109_TPWRS_2018_2888937
crossref_primary_10_1016_j_apenergy_2019_03_112
crossref_primary_10_1016_j_apenergy_2019_113535
crossref_primary_10_1002_2014WR016473
crossref_primary_10_3390_forecast4010004
Cites_doi 10.1109/TPWRS.2007.901117
10.1002/jae.1166
10.1002/we.230
10.1002/qj.49712556006
10.1175/2009MWR2945.1
10.1016/j.energy.2008.04.003
10.1016/j.ijforecast.2009.12.015
10.1002/we.309
10.1109/TPWRS.2010.2045774
10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
10.1109/TPWRS.2010.2065818
10.1016/S0169-2070(01)00126-1
10.1016/j.energy.2011.03.058
10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
10.1007/BF03178958
10.1016/j.apenergy.2011.04.011
10.1002/we.526
10.1175/1520-0493(2004)132<1329:TMSTHA>2.0.CO;2
10.1016/j.jcp.2007.02.014
10.1088/0034-4885/63/2/201
10.1016/j.rser.2007.01.015
10.1109/TPWRS.2010.2070848
10.2172/968212
10.1057/jors.1969.52
10.1002/we.284
10.1016/j.apenergy.2009.09.022
10.1007/s11749-008-0114-x
10.1002/we.235
10.1016/j.energy.2009.11.023
10.1111/j.1467-9868.2007.00587.x
10.1109/TPWRS.2009.2036810
10.1175/2007WAF2006116.1
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.2172/1216743
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7ST
7U6
C1K
SOI
7SU
7TA
8FD
FR3
JG9
7S9
L.6
1XC
DOI 10.1016/j.apenergy.2011.11.004
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Environmental Engineering Abstracts
Materials Business File
Technology Research Database
Engineering Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineering Research Database
Technology Research Database
Materials Business File
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
AGRICOLA


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 20
ExternalDocumentID oai:HAL:hal-00654836v1
10_1016_j_apenergy_2011_11_004
S0306261911006994
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7U6
C1K
SOI
7SU
7TA
8FD
FR3
JG9
7S9
L.6
1XC
ID FETCH-LOGICAL-c445t-6b091ed7afba469222f39e4ae810e7d9d504c871a39edf2aa28c5abb20c9ed063
ISICitedReferencesCount 180
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305595500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Oct 14 20:41:43 EDT 2025
Sun Sep 28 11:45:03 EDT 2025
Tue Oct 07 09:24:45 EDT 2025
Tue Oct 07 09:35:27 EDT 2025
Sat Nov 29 07:16:08 EST 2025
Tue Nov 18 21:18:57 EST 2025
Fri Feb 23 02:36:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Diagnostic tools
Time trajectories
Renewable energy
Forecasting
Multivariate verification
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-6b091ed7afba469222f39e4ae810e7d9d504c871a39edf2aa28c5abb20c9ed063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7388-827X
PQID 1034813233
PQPubID 23462
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_00654836v1
proquest_miscellaneous_2000025244
proquest_miscellaneous_1671479262
proquest_miscellaneous_1034813233
crossref_citationtrail_10_1016_j_apenergy_2011_11_004
crossref_primary_10_1016_j_apenergy_2011_11_004
elsevier_sciencedirect_doi_10_1016_j_apenergy_2011_11_004
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References D’Urso (b0120) 2000; 9
Pinson, Chevallier, Kariniotakis (b0065) 2007; 22
Juul, Meibom (b0015) 2011; 36
Stephenson, Coelho, Jolliffe (b0185) 2008; 23
Hamill (b0150) 2001; 129
Giebel G, Brownsword R, Kariniotakis G, Denhardt M, Draxl C. The state of the art in short-term prediction of wind power – a literature overview, 2nd ed. Technical report, EU project ANEMOS.plus; 2011.
Leutbecher, Palmer (b0085) 2008; 227
Cutler, Kay, Jacka, Nielsen (b0175) 2007; 10
Morales, Conejo, Perez-Ruiz (b0070) 2010; 25
Jordà, Marcellino (b0115) 2010; 25
Buizza, Miller, Palmer (b0135) 1999; 131
Lund, Moller, Mathiesen, Dyrelund (b0010) 2010; 35
Granger (b0040) 1969; 20
Toth, Tallagrand, Candille, Zhu (b0195) 2006
Gneiting, Stanberry, Grimit, Held, Johnson (b0105) 2008; 17
Pinson, Madsen (b0140) 2009; 12
Wilks (b0155) 2004; 132
Brier (b0200) 1950; 78
Murphy (b0180) 1973; 12
Costa, Crespo, Navarro, Lizcano, Madsen, Feitosa (b0025) 2008; 12
Meibom, Barth, Hasche, Brand, weber, O’Malley (b0060) 2011; 26
Matos, Bessa (b0050) 2011; 26
Holmgren E. Risk indices for the estimation of uncertainty in wind power predictions based on ensembles of numerical weather predictions. M.Sc. thesis, Chalmers University of Technology, Göteborg, Sweden; 2009.
Gneiting, Balabdaoui, Raftery (b0090) 2007; 69
Jolliffe, Stephenson (b0160) 2003
Wang, Botterud, Bessa, keko, Carvalho, Issicaba (b0055) 2011; 88
Lund, Mathiesen (b0005) 2009; 34
Palmer (b0130) 2000; 63
Pinson, Nielsen, Møller, Madsen, Kariniotakis (b0095) 2007; 10
Benedetti (b0190) 2010; 138
Gneiting (b0045) 2011; 27
Monteiro C, Bessa R, Miranda V, Botterud A, Wang J, Conzelmann G. Wind power forecasting: state of the art 2009. Technical report, Argonne National Laboratory, ANL/DIS-10-1; 2009.
Clements, Smith (b0100) 2002; 18
Pinson, Kariniotakis (b0145) 2010; 25
Flowers L, Miner-Nordstrom L. Wind energy applications for municipal water services: opportunities, situation analyses and case-studies. In: AWWA/WEF joint management conference, Salt Lake City, Utah; 2006 [ref. NREL/CP-500-39178].
Wilks (b0165) 1995
Bossavy A, Girard R, Kariniotakis G. Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 2011; in press.
Morales, Minguez, Conejo (b0080) 2010; 87
Kaut, Wallace (b0110) 2004; 3
Pinson, Papaefthymiou, Klockl, Nielsen, Madsen (b0075) 2009; 12
Morales (10.1016/j.apenergy.2011.11.004_b0080) 2010; 87
Brier (10.1016/j.apenergy.2011.11.004_b0200) 1950; 78
Costa (10.1016/j.apenergy.2011.11.004_b0025) 2008; 12
Kaut (10.1016/j.apenergy.2011.11.004_b0110) 2004; 3
Benedetti (10.1016/j.apenergy.2011.11.004_b0190) 2010; 138
Leutbecher (10.1016/j.apenergy.2011.11.004_b0085) 2008; 227
D’Urso (10.1016/j.apenergy.2011.11.004_b0120) 2000; 9
10.1016/j.apenergy.2011.11.004_b0170
10.1016/j.apenergy.2011.11.004_b0030
Juul (10.1016/j.apenergy.2011.11.004_b0015) 2011; 36
Toth (10.1016/j.apenergy.2011.11.004_b0195) 2006
Granger (10.1016/j.apenergy.2011.11.004_b0040) 1969; 20
Pinson (10.1016/j.apenergy.2011.11.004_b0140) 2009; 12
Murphy (10.1016/j.apenergy.2011.11.004_b0180) 1973; 12
10.1016/j.apenergy.2011.11.004_b0020
Clements (10.1016/j.apenergy.2011.11.004_b0100) 2002; 18
Buizza (10.1016/j.apenergy.2011.11.004_b0135) 1999; 131
Meibom (10.1016/j.apenergy.2011.11.004_b0060) 2011; 26
Stephenson (10.1016/j.apenergy.2011.11.004_b0185) 2008; 23
Wang (10.1016/j.apenergy.2011.11.004_b0055) 2011; 88
10.1016/j.apenergy.2011.11.004_b0125
Gneiting (10.1016/j.apenergy.2011.11.004_b0105) 2008; 17
Hamill (10.1016/j.apenergy.2011.11.004_b0150) 2001; 129
Jordà (10.1016/j.apenergy.2011.11.004_b0115) 2010; 25
Lund (10.1016/j.apenergy.2011.11.004_b0005) 2009; 34
Lund (10.1016/j.apenergy.2011.11.004_b0010) 2010; 35
Wilks (10.1016/j.apenergy.2011.11.004_b0155) 2004; 132
Gneiting (10.1016/j.apenergy.2011.11.004_b0045) 2011; 27
Pinson (10.1016/j.apenergy.2011.11.004_b0065) 2007; 22
Pinson (10.1016/j.apenergy.2011.11.004_b0075) 2009; 12
Wilks (10.1016/j.apenergy.2011.11.004_b0165) 1995
Palmer (10.1016/j.apenergy.2011.11.004_b0130) 2000; 63
Jolliffe (10.1016/j.apenergy.2011.11.004_b0160) 2003
Pinson (10.1016/j.apenergy.2011.11.004_b0095) 2007; 10
Matos (10.1016/j.apenergy.2011.11.004_b0050) 2011; 26
Pinson (10.1016/j.apenergy.2011.11.004_b0145) 2010; 25
Morales (10.1016/j.apenergy.2011.11.004_b0070) 2010; 25
Gneiting (10.1016/j.apenergy.2011.11.004_b0090) 2007; 69
10.1016/j.apenergy.2011.11.004_b0035
Cutler (10.1016/j.apenergy.2011.11.004_b0175) 2007; 10
References_xml – volume: 20
  start-page: 199
  year: 1969
  end-page: 207
  ident: b0040
  article-title: Prediction with a generalized cost of error function
  publication-title: Oper Res Quar
– volume: 12
  start-page: 1725
  year: 2008
  end-page: 1744
  ident: b0025
  article-title: A review on the young history of the wind power short-term prediction
  publication-title: Renew Sust Energ Rev
– volume: 129
  start-page: 550
  year: 2001
  end-page: 560
  ident: b0150
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mon Weather Rev
– volume: 10
  start-page: 453
  year: 2007
  end-page: 470
  ident: b0175
  article-title: Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT
  publication-title: Wind Energy
– volume: 27
  start-page: 197
  year: 2011
  end-page: 207
  ident: b0045
  article-title: Quantiles as optimal point predictors
  publication-title: Int J Forecast
– volume: 138
  start-page: 201
  year: 2010
  end-page: 211
  ident: b0190
  article-title: Scoring rules for forecast verification
  publication-title: Mon Weather Rev
– reference: Monteiro C, Bessa R, Miranda V, Botterud A, Wang J, Conzelmann G. Wind power forecasting: state of the art 2009. Technical report, Argonne National Laboratory, ANL/DIS-10-1; 2009.
– reference: Flowers L, Miner-Nordstrom L. Wind energy applications for municipal water services: opportunities, situation analyses and case-studies. In: AWWA/WEF joint management conference, Salt Lake City, Utah; 2006 [ref. NREL/CP-500-39178].
– reference: Bossavy A, Girard R, Kariniotakis G. Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 2011; in press.
– volume: 34
  start-page: 524
  year: 2009
  end-page: 531
  ident: b0005
  article-title: Energy systems analysis of 100% renewable energy systems – the case of Denmark in years 2030 and 2050
  publication-title: Energy
– volume: 36
  start-page: 323
  year: 2011
  end-page: 330
  ident: b0015
  article-title: Optimal configuration of an integrated power and transport system
  publication-title: Energy
– volume: 17
  start-page: 211
  year: 2008
  end-page: 235
  ident: b0105
  article-title: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
  publication-title: Test
– volume: 12
  start-page: 51
  year: 2009
  end-page: 62
  ident: b0075
  article-title: From probabilistic forecasts to statistical scenarios of short-term wind power production
  publication-title: Wind Energy
– year: 2003
  ident: b0160
  article-title: Forecast verification – a practitioner’s guide in atmospheric science
– volume: 25
  start-page: 635
  year: 2010
  end-page: 662
  ident: b0115
  article-title: Path forecast evaluation
  publication-title: J Appl Econ
– volume: 23
  start-page: 752
  year: 2008
  end-page: 757
  ident: b0185
  article-title: Two extra components in the Brier score decomposition
  publication-title: Weather Forecast
– start-page: 137
  year: 2006
  end-page: 164
  ident: b0195
  article-title: Probability and ensemble forecasts
  publication-title: Forecast verification – a practitioner’s guide in atmospheric science
– volume: 227
  start-page: 3515
  year: 2008
  end-page: 3539
  ident: b0085
  article-title: Ensemble forecasting
  publication-title: J Comput Phys
– volume: 131
  start-page: 2887
  year: 1999
  end-page: 2908
  ident: b0135
  article-title: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
  publication-title: Q J Roy Meteor Soc
– year: 1995
  ident: b0165
  article-title: Statistical methods in the atmospheric sciences
– volume: 26
  start-page: 594
  year: 2011
  end-page: 603
  ident: b0050
  article-title: Setting the operating reserve using probabilistic wind power forecasts
  publication-title: IEEE Trans Power Syst
– volume: 35
  start-page: 1381
  year: 2010
  end-page: 1390
  ident: b0010
  article-title: The role of district heating in future renewable energy systems
  publication-title: Energy
– volume: 87
  start-page: 843
  year: 2010
  end-page: 855
  ident: b0080
  article-title: A methodology to generate statistically dependent wind speed scenarios
  publication-title: Appl Energy
– volume: 12
  start-page: 137
  year: 2009
  end-page: 155
  ident: b0140
  article-title: Ensemble-based probabilistic forecasting at Horns Rev
  publication-title: Wind Energy
– volume: 3
  start-page: 257
  year: 2004
  end-page: 271
  ident: b0110
  article-title: Evaluation of scenario-generation methods for stochastic programming
  publication-title: Pacif J Optim
– volume: 12
  start-page: 595
  year: 1973
  end-page: 600
  ident: b0180
  article-title: A new vector partition of the probability score
  publication-title: J Appl Meteor
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  ident: b0200
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
– volume: 9
  start-page: 53
  year: 2000
  end-page: 83
  ident: b0120
  article-title: Dissimilarity measures for time trajectories
  publication-title: J Italian Stat Soc
– volume: 63
  start-page: 71
  year: 2000
  end-page: 116
  ident: b0130
  article-title: Predicting uncertainty in forecasts of weather and climate
  publication-title: Rep Prog Phys
– volume: 26
  start-page: 1367
  year: 2011
  end-page: 1379
  ident: b0060
  article-title: Stochastic optimization model to study the operational impact of high wind power penetrations in ireland
  publication-title: IEEE Trans Power Syst
– reference: Holmgren E. Risk indices for the estimation of uncertainty in wind power predictions based on ensembles of numerical weather predictions. M.Sc. thesis, Chalmers University of Technology, Göteborg, Sweden; 2009.
– volume: 132
  start-page: 1329
  year: 2004
  end-page: 1340
  ident: b0155
  article-title: The minimum spanning tree histogram as a verification tool for multidimensional ensemble forecasts
  publication-title: Mon Weather Rev
– reference: Giebel G, Brownsword R, Kariniotakis G, Denhardt M, Draxl C. The state of the art in short-term prediction of wind power – a literature overview, 2nd ed. Technical report, EU project ANEMOS.plus; 2011.
– volume: 10
  start-page: 497
  year: 2007
  end-page: 516
  ident: b0095
  article-title: Nonparametric probabilistic forecasts of wind power: required properties and evaluation
  publication-title: Wind Energy
– volume: 88
  start-page: 4014
  year: 2011
  end-page: 4023
  ident: b0055
  article-title: Wind power forecast uncertainty and unit commitment
  publication-title: Appl Energy
– volume: 25
  start-page: 1845
  year: 2010
  end-page: 1856
  ident: b0145
  article-title: Conditional prediction intervals of wind power generation
  publication-title: IEEE Trans Power Syst
– volume: 22
  start-page: 1148
  year: 2007
  end-page: 1156
  ident: b0065
  article-title: Trading wind energy from short-term probabilistic forecasts of wind power
  publication-title: IEEE Trans Power Syst
– volume: 69
  start-page: 243
  year: 2007
  end-page: 268
  ident: b0090
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J Roy Stat Soc B
– volume: 25
  start-page: 554
  year: 2010
  end-page: 564
  ident: b0070
  article-title: Short-term trading for a wind power producer
  publication-title: IEEE Trans Power Syst
– volume: 18
  start-page: 397
  year: 2002
  end-page: 407
  ident: b0100
  article-title: Evaluating multivariate forecast densities: a comparison of two approaches
  publication-title: Int J Forecast
– volume: 22
  start-page: 1148
  year: 2007
  ident: 10.1016/j.apenergy.2011.11.004_b0065
  article-title: Trading wind energy from short-term probabilistic forecasts of wind power
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.901117
– volume: 25
  start-page: 635
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.004_b0115
  article-title: Path forecast evaluation
  publication-title: J Appl Econ
  doi: 10.1002/jae.1166
– volume: 10
  start-page: 497
  year: 2007
  ident: 10.1016/j.apenergy.2011.11.004_b0095
  article-title: Nonparametric probabilistic forecasts of wind power: required properties and evaluation
  publication-title: Wind Energy
  doi: 10.1002/we.230
– volume: 131
  start-page: 2887
  year: 1999
  ident: 10.1016/j.apenergy.2011.11.004_b0135
  article-title: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
  publication-title: Q J Roy Meteor Soc
  doi: 10.1002/qj.49712556006
– start-page: 137
  year: 2006
  ident: 10.1016/j.apenergy.2011.11.004_b0195
  article-title: Probability and ensemble forecasts
– volume: 138
  start-page: 201
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.004_b0190
  article-title: Scoring rules for forecast verification
  publication-title: Mon Weather Rev
  doi: 10.1175/2009MWR2945.1
– volume: 34
  start-page: 524
  year: 2009
  ident: 10.1016/j.apenergy.2011.11.004_b0005
  article-title: Energy systems analysis of 100% renewable energy systems – the case of Denmark in years 2030 and 2050
  publication-title: Energy
  doi: 10.1016/j.energy.2008.04.003
– volume: 27
  start-page: 197
  year: 2011
  ident: 10.1016/j.apenergy.2011.11.004_b0045
  article-title: Quantiles as optimal point predictors
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2009.12.015
– volume: 3
  start-page: 257
  year: 2004
  ident: 10.1016/j.apenergy.2011.11.004_b0110
  article-title: Evaluation of scenario-generation methods for stochastic programming
  publication-title: Pacif J Optim
– volume: 12
  start-page: 137
  year: 2009
  ident: 10.1016/j.apenergy.2011.11.004_b0140
  article-title: Ensemble-based probabilistic forecasting at Horns Rev
  publication-title: Wind Energy
  doi: 10.1002/we.309
– volume: 25
  start-page: 1845
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.004_b0145
  article-title: Conditional prediction intervals of wind power generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2045774
– volume: 129
  start-page: 550
  year: 2001
  ident: 10.1016/j.apenergy.2011.11.004_b0150
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
– volume: 26
  start-page: 594
  year: 2011
  ident: 10.1016/j.apenergy.2011.11.004_b0050
  article-title: Setting the operating reserve using probabilistic wind power forecasts
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2065818
– volume: 18
  start-page: 397
  year: 2002
  ident: 10.1016/j.apenergy.2011.11.004_b0100
  article-title: Evaluating multivariate forecast densities: a comparison of two approaches
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(01)00126-1
– volume: 36
  start-page: 323
  year: 2011
  ident: 10.1016/j.apenergy.2011.11.004_b0015
  article-title: Optimal configuration of an integrated power and transport system
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.058
– volume: 12
  start-page: 595
  year: 1973
  ident: 10.1016/j.apenergy.2011.11.004_b0180
  article-title: A new vector partition of the probability score
  publication-title: J Appl Meteor
  doi: 10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
– volume: 9
  start-page: 53
  year: 2000
  ident: 10.1016/j.apenergy.2011.11.004_b0120
  article-title: Dissimilarity measures for time trajectories
  publication-title: J Italian Stat Soc
  doi: 10.1007/BF03178958
– volume: 88
  start-page: 4014
  year: 2011
  ident: 10.1016/j.apenergy.2011.11.004_b0055
  article-title: Wind power forecast uncertainty and unit commitment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.04.011
– ident: 10.1016/j.apenergy.2011.11.004_b0170
  doi: 10.1002/we.526
– volume: 132
  start-page: 1329
  year: 2004
  ident: 10.1016/j.apenergy.2011.11.004_b0155
  article-title: The minimum spanning tree histogram as a verification tool for multidimensional ensemble forecasts
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(2004)132<1329:TMSTHA>2.0.CO;2
– volume: 227
  start-page: 3515
  year: 2008
  ident: 10.1016/j.apenergy.2011.11.004_b0085
  article-title: Ensemble forecasting
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.02.014
– volume: 63
  start-page: 71
  year: 2000
  ident: 10.1016/j.apenergy.2011.11.004_b0130
  article-title: Predicting uncertainty in forecasts of weather and climate
  publication-title: Rep Prog Phys
  doi: 10.1088/0034-4885/63/2/201
– volume: 12
  start-page: 1725
  year: 2008
  ident: 10.1016/j.apenergy.2011.11.004_b0025
  article-title: A review on the young history of the wind power short-term prediction
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2007.01.015
– volume: 26
  start-page: 1367
  year: 2011
  ident: 10.1016/j.apenergy.2011.11.004_b0060
  article-title: Stochastic optimization model to study the operational impact of high wind power penetrations in ireland
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2070848
– ident: 10.1016/j.apenergy.2011.11.004_b0030
  doi: 10.2172/968212
– year: 2003
  ident: 10.1016/j.apenergy.2011.11.004_b0160
– volume: 20
  start-page: 199
  year: 1969
  ident: 10.1016/j.apenergy.2011.11.004_b0040
  article-title: Prediction with a generalized cost of error function
  publication-title: Oper Res Quar
  doi: 10.1057/jors.1969.52
– volume: 12
  start-page: 51
  year: 2009
  ident: 10.1016/j.apenergy.2011.11.004_b0075
  article-title: From probabilistic forecasts to statistical scenarios of short-term wind power production
  publication-title: Wind Energy
  doi: 10.1002/we.284
– volume: 87
  start-page: 843
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.004_b0080
  article-title: A methodology to generate statistically dependent wind speed scenarios
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.022
– volume: 17
  start-page: 211
  year: 2008
  ident: 10.1016/j.apenergy.2011.11.004_b0105
  article-title: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
  publication-title: Test
  doi: 10.1007/s11749-008-0114-x
– volume: 10
  start-page: 453
  year: 2007
  ident: 10.1016/j.apenergy.2011.11.004_b0175
  article-title: Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT
  publication-title: Wind Energy
  doi: 10.1002/we.235
– volume: 35
  start-page: 1381
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.004_b0010
  article-title: The role of district heating in future renewable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2009.11.023
– volume: 69
  start-page: 243
  year: 2007
  ident: 10.1016/j.apenergy.2011.11.004_b0090
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J Roy Stat Soc B
  doi: 10.1111/j.1467-9868.2007.00587.x
– volume: 25
  start-page: 554
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.004_b0070
  article-title: Short-term trading for a wind power producer
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2036810
– volume: 23
  start-page: 752
  year: 2008
  ident: 10.1016/j.apenergy.2011.11.004_b0185
  article-title: Two extra components in the Brier score decomposition
  publication-title: Weather Forecast
  doi: 10.1175/2007WAF2006116.1
– ident: 10.1016/j.apenergy.2011.11.004_b0035
– volume: 78
  start-page: 1
  year: 1950
  ident: 10.1016/j.apenergy.2011.11.004_b0200
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– ident: 10.1016/j.apenergy.2011.11.004_b0020
  doi: 10.2172/1216743
– ident: 10.1016/j.apenergy.2011.11.004_b0125
– year: 1995
  ident: 10.1016/j.apenergy.2011.11.004_b0165
SSID ssj0002120
Score 2.5105891
Snippet ► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate,...
Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Decision making
Diagnostic tools
Discrimination
domain_spi.energ
Engineering Sciences
Forecasting
Lead time
Multivariate verification
Optimization
power generation
Programming
Renewable energy
Stochasticity
Temporal logic
Time trajectories
wind power
Wind power generation
Title Evaluating the quality of scenarios of short-term wind power generation
URI https://dx.doi.org/10.1016/j.apenergy.2011.11.004
https://www.proquest.com/docview/1034813233
https://www.proquest.com/docview/1671479262
https://www.proquest.com/docview/2000025244
https://minesparis-psl.hal.science/hal-00654836
Volume 96
WOSCitedRecordID wos000305595500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoywEOqBSqLo8qIG4oy8ZJ_Diu0LYFVVUFBe0t8jqOuhXKrjbb0p_PjO04UaEUhLhEiWXn4RmPx_F83xDyRlS01Fylsc60irOqTGLFJFwyLYVhZUot8fzXY35yIqZTeepTwjc2nQCva3F9LZf_VdRQBsJG6OxfiDvcFArgHIQORxA7HP9I8BPP3-1hUA41affRkbgJlsYLG73RnIPjHaNhfvt9jmQBmC4NEyqbVSeslp7Wu6rGAgWDNQ3AsdNhCOOZr5QLlv807P9QwMgM0f-hEJAuXViRRVeNWIyrLTdvOGMpOEVjKfrWVPbNoY-QdhOrBb39bLLd34OLoVq6j3C0qsis6vIS36DD_oxvgi-CXHdMymyDbFGeSzDKW-MPk-nHMA9TT8rZvnkPH_7rp93mmmycY4zsjana-h9n2-SRXzhEYyfwx-SeqXfIwx6d5A7ZnXSoRajqzXbzhBx2OhGBTkReJ6JFFQWdsBdBJyLUicjqRNTpxFPy5WBy9v4o9hk0YOhl-TpmM3AHTclVNVMZk-ALVqk0mTIiGRleyjIfZRqWzApKy4oqRYXO1WxGRxoKwHvdJZv1ojZ7JMKGsmKaKnBZFU1hREvcsy4TkVXgZg5I3nZeoT29PGY5-Va0cYQXRdvpBXY6rD0L6PQBeRfaLR3Byp0tZCubwruJzv0rQKXubPsahBkehNzqR-PjAssszFqk7CoZkFetrAswtriDpmqzuGzgzohbT2ma_qYO40nGkYbz9jqIj4PFBrjWz_7hY56TB934fUE216tL85Lc11frebPa98PhB1crwBo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+quality+of+scenarios+of+short-term+wind+power+generation&rft.jtitle=Applied+energy&rft.au=Pinson%2C+P.&rft.au=Girard%2C+R.&rft.date=2012-08-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=96&rft.spage=12&rft.epage=20&rft_id=info:doi/10.1016%2Fj.apenergy.2011.11.004&rft.externalDocID=S0306261911006994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon