Evaluating the quality of scenarios of short-term wind power generation

► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 96; s. 12 - 20
Hlavní autoři: Pinson, P., Girard, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2012
Elsevier
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises. Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2011.11.004