Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures

We study dispersive effects of wave propagation in periodic media, which can be modelled by adding a fourth-order term in the homogenized equation. The corresponding fourth-order dispersive tensor is called Burnett tensor and we numerically optimize its values in order to minimize or maximize disper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 140; číslo 2; s. 265 - 326
Hlavní autoři: Allaire, Grégoire, Yamada, T
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Science and Business Media LLC 01.10.2018
Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study dispersive effects of wave propagation in periodic media, which can be modelled by adding a fourth-order term in the homogenized equation. The corresponding fourth-order dispersive tensor is called Burnett tensor and we numerically optimize its values in order to minimize or maximize dispersion. More precisely, we consider the case of a two-phase composite medium with an eightfold symmetry assumption of the periodicity cell in two space dimensions. We obtain upper and lower bound for the dispersive properties, along with optimal microgeometries.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-018-0972-4