Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the...
Saved in:
| Published in: | Energy (Oxford) Vol. 90; pp. 1334 - 1341 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2015
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance.
•We propose a hybrid adaptive differential evolution algorithm (HADE).•The search efficiency is enhanced in low and high dimension search space.•The effectiveness is confirmed by testing benchmark functions.•The identification of the PEMFC model is conducted by adopting HADE. |
|---|---|
| AbstractList | In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. •We propose a hybrid adaptive differential evolution algorithm (HADE).•The search efficiency is enhanced in low and high dimension search space.•The effectiveness is confirmed by testing benchmark functions.•The identification of the PEMFC model is conducted by adopting HADE. |
| Author | Bi, Yunrui Wang, Ning Srinivasan, Dipti Sun, Zhe |
| Author_xml | – sequence: 1 givenname: Zhe surname: Sun fullname: Sun, Zhe email: jickrey@163.com, nwang@iipc.zju.edu.cn organization: National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, PR China – sequence: 2 givenname: Ning surname: Wang fullname: Wang, Ning organization: National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, PR China – sequence: 3 givenname: Yunrui surname: Bi fullname: Bi, Yunrui organization: School of Automation, Southeast University, Nanjing 210096, PR China – sequence: 4 givenname: Dipti surname: Srinivasan fullname: Srinivasan, Dipti organization: Department of Electrical Computer Engineering, National University of Singapore, 117576, Singapore |
| BookMark | eNqFkLtOxDAQRV2AxPMPKFzSbBgnTuJQIKEVLwkEBdTWxJ6AV0m82N6V9u_JslQU0MyVRvfc4hyxvdGPxNiZgEyAqC4WGY0U3jdZDqLMoMpAiT12CEUFs1LK_IAdxbgAgFI1zSHDFww4UKLAnaUxuc4ZTM6P3Hf85ebpds4Hb6nnLUayfPp_bNrgLEeLy-TWxK3rOgpbFHtOa9-vvnHs331w6WM4Yfsd9pFOf_KYvd3evM7vZ4_Pdw_z68eZkVKmmS3algoStaLGQDkl5k1X520r8rI1CosarcBK1srmbaFAKVNXJLA00EgrimN2vttdBv-5opj04KKhvseR_CrqHGSpYLpyqspd1QQfY6BOL4MbMGy0AL21qBd6Z1FvLWqo9GRxwi5_Ycalb1kpoOv_g692ME0O1o6CjsbRaMi6QCZp693fA1_RIZX0 |
| CitedBy_id | crossref_primary_10_1016_j_est_2024_114979 crossref_primary_10_3390_en11082099 crossref_primary_10_1016_j_egyr_2020_05_024 crossref_primary_10_1002_er_4809 crossref_primary_10_1155_2022_6951849 crossref_primary_10_1016_j_jpowsour_2018_01_075 crossref_primary_10_1007_s00202_020_01103_6 crossref_primary_10_1016_j_energy_2017_01_078 crossref_primary_10_1016_j_ijhydene_2025_150100 crossref_primary_10_1016_j_enconman_2024_118371 crossref_primary_10_1016_j_energy_2018_10_038 crossref_primary_10_1002_ceat_202300378 crossref_primary_10_1016_j_enconman_2018_08_039 crossref_primary_10_1016_j_energy_2024_130601 crossref_primary_10_3390_en12101884 crossref_primary_10_1016_j_energy_2018_01_065 crossref_primary_10_1016_j_renene_2024_120890 crossref_primary_10_3390_pr9081416 crossref_primary_10_1016_j_energy_2021_122096 crossref_primary_10_1109_ACCESS_2019_2913017 crossref_primary_10_2298_TSCI220912062L crossref_primary_10_1016_j_egyr_2023_11_007 crossref_primary_10_3390_su15086676 crossref_primary_10_1016_j_energy_2022_124454 crossref_primary_10_1007_s11581_025_06521_9 crossref_primary_10_1016_j_ijhydene_2022_12_106 crossref_primary_10_1002_er_7103 crossref_primary_10_1002_er_8437 crossref_primary_10_1016_j_energy_2021_119836 crossref_primary_10_1007_s11581_024_05999_z crossref_primary_10_1016_j_enconman_2017_01_014 crossref_primary_10_1016_j_ijhydene_2022_08_024 crossref_primary_10_1007_s11581_024_05931_5 crossref_primary_10_1016_j_egyr_2021_09_145 crossref_primary_10_1016_j_energy_2017_11_014 crossref_primary_10_1016_j_ijhydene_2018_01_020 crossref_primary_10_1016_j_apenergy_2024_123297 crossref_primary_10_1007_s40095_022_00483_8 crossref_primary_10_1016_j_enconman_2020_113777 crossref_primary_10_1007_s40815_020_00883_0 crossref_primary_10_1016_j_jpowsour_2016_06_039 crossref_primary_10_1016_j_renene_2024_122319 crossref_primary_10_1038_s41598_024_81160_0 crossref_primary_10_1038_s41598_025_87695_0 crossref_primary_10_1002_er_7576 crossref_primary_10_1016_j_jpowsour_2017_04_068 crossref_primary_10_1007_s41939_024_00575_4 crossref_primary_10_1016_j_rser_2018_05_017 crossref_primary_10_3390_en16124743 crossref_primary_10_1016_j_energy_2019_116616 crossref_primary_10_1016_j_measurement_2025_116917 crossref_primary_10_1016_j_ijhydene_2016_07_034 crossref_primary_10_1016_j_egyr_2022_11_047 crossref_primary_10_1007_s10706_018_0634_4 crossref_primary_10_1016_j_egyr_2019_09_039 crossref_primary_10_1515_eng_2020_0088 crossref_primary_10_1002_fuce_201800025 crossref_primary_10_1016_j_ijhydene_2016_11_151 crossref_primary_10_1002_fuce_70011 crossref_primary_10_1016_j_egyr_2025_05_071 crossref_primary_10_1108_COMPEL_12_2019_0495 crossref_primary_10_1007_s11831_022_09825_5 crossref_primary_10_1016_j_renene_2020_12_131 crossref_primary_10_1007_s00521_021_05821_1 crossref_primary_10_1016_j_enconman_2020_112501 crossref_primary_10_1080_01430750_2020_1842240 crossref_primary_10_1016_j_energy_2017_09_067 crossref_primary_10_1016_j_energy_2022_123830 crossref_primary_10_1016_j_energy_2019_116614 crossref_primary_10_1002_er_6987 crossref_primary_10_1016_j_energy_2025_135397 crossref_primary_10_1007_s11581_024_05963_x crossref_primary_10_1016_j_apenergy_2018_02_071 crossref_primary_10_1016_j_ijhydene_2023_05_347 crossref_primary_10_1016_j_energy_2016_04_093 crossref_primary_10_1109_ACCESS_2023_3236023 crossref_primary_10_1002_ente_202000007 crossref_primary_10_1016_j_enconman_2019_112204 crossref_primary_10_1016_j_energy_2017_05_035 crossref_primary_10_1016_j_energy_2016_05_057 crossref_primary_10_1016_j_ijhydene_2022_09_141 crossref_primary_10_1007_s11581_025_06313_1 crossref_primary_10_1109_ACCESS_2025_3580704 crossref_primary_10_3390_en16145290 crossref_primary_10_1016_j_energy_2018_01_029 crossref_primary_10_3390_app11052052 crossref_primary_10_1016_j_engappai_2019_07_019 crossref_primary_10_1016_j_ijhydene_2021_01_076 crossref_primary_10_3390_su15064982 crossref_primary_10_1007_s00521_020_05581_4 crossref_primary_10_1038_s41598_020_74228_0 crossref_primary_10_1016_j_ijhydene_2021_03_105 crossref_primary_10_1049_iet_rpg_2017_0232 crossref_primary_10_1002_er_5244 crossref_primary_10_1007_s00521_020_05333_4 crossref_primary_10_1109_ACCESS_2020_2973351 crossref_primary_10_3390_app10155110 crossref_primary_10_1038_s41598_024_83538_6 crossref_primary_10_1016_j_fuel_2022_127080 crossref_primary_10_1016_j_enconman_2019_112197 crossref_primary_10_1016_j_seta_2024_103673 crossref_primary_10_1109_ACCESS_2018_2869217 crossref_primary_10_1016_j_egyr_2020_06_011 crossref_primary_10_1049_rpg2_12621 crossref_primary_10_3390_en14165022 crossref_primary_10_1109_TIA_2021_3116549 crossref_primary_10_1016_j_egyr_2024_05_057 crossref_primary_10_1016_j_jclepro_2020_121660 crossref_primary_10_1016_j_fuel_2023_129589 crossref_primary_10_1109_ACCESS_2020_3021754 crossref_primary_10_1109_ACCESS_2018_2872062 crossref_primary_10_1016_j_ijhydene_2021_04_130 crossref_primary_10_1016_j_ijhydene_2018_11_140 crossref_primary_10_1016_j_ijhydene_2020_11_119 crossref_primary_10_1016_j_enconman_2020_113341 crossref_primary_10_1002_er_4424 crossref_primary_10_1016_j_egyr_2019_11_013 crossref_primary_10_3390_computers7040060 crossref_primary_10_1016_j_energy_2019_06_152 crossref_primary_10_1016_j_renene_2019_12_105 crossref_primary_10_1049_rpg2_12359 crossref_primary_10_1016_j_egyr_2020_04_013 crossref_primary_10_1016_j_energy_2019_02_106 crossref_primary_10_3390_su12198127 crossref_primary_10_1016_j_eswa_2024_125601 crossref_primary_10_1007_s10973_020_10370_1 crossref_primary_10_3390_su151310590 crossref_primary_10_1016_j_asoc_2023_110791 crossref_primary_10_1002_fuce_201900155 crossref_primary_10_1016_j_energy_2023_128935 crossref_primary_10_1016_j_eswa_2023_121904 crossref_primary_10_1016_j_egyr_2020_06_002 crossref_primary_10_1080_01430750_2025_2469531 crossref_primary_10_1016_j_energy_2025_136079 crossref_primary_10_1016_j_ijhydene_2024_12_445 crossref_primary_10_3390_pr9101808 |
| Cites_doi | 10.1016/j.renene.2007.04.013 10.1007/s00500-004-0363-x 10.1016/j.energy.2014.01.075 10.1109/MCS.2004.1275430 10.1016/j.eswa.2014.06.022 10.1016/j.energy.2014.02.092 10.1016/j.ijepes.2013.01.001 10.1016/j.energy.2009.12.010 10.1016/S0378-7753(99)00484-X 10.1016/j.energy.2012.01.039 10.1109/TEVC.2006.872133 10.1016/j.apenergy.2010.09.030 10.1016/j.energy.2013.07.005 10.1016/j.ijhydene.2010.07.129 10.1016/j.ijepes.2014.04.022 10.1016/S0305-0548(03)00116-3 10.1109/TIE.2004.834972 10.1016/j.energy.2006.08.007 10.1002/er.1170 10.1016/j.ijhydene.2014.07.081 10.1038/nature01127 10.1016/j.ins.2004.06.009 10.1016/j.energy.2009.06.010 10.1149/1.2043866 10.1007/s10898-007-9149-x 10.1016/j.ijhydene.2012.02.131 10.1016/j.compchemeng.2012.05.008 10.1016/j.ijhydene.2012.10.026 10.1023/A:1008202821328 10.1016/j.ijhydene.2008.11.026 10.1016/j.ijepes.2010.08.032 10.1109/TCYB.2013.2278188 10.1016/j.ijhydene.2013.01.058 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2015.06.081 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EndPage | 1341 |
| ExternalDocumentID | 10_1016_j_energy_2015_06_081 S0360544215008373 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c444t-d3bbe3e178e9c05178a29f72bb125bc8a37ad1a6478d2b38088c76e1a5c094d13 |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364245300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 18:48:15 EDT 2025 Sat Nov 29 07:22:14 EST 2025 Tue Nov 18 22:18:58 EST 2025 Fri Feb 23 02:20:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parameter identification Hybrid adaptive DE algorithm Proton exchange membrane fuel cell (PEMFC) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c444t-d3bbe3e178e9c05178a29f72bb125bc8a37ad1a6478d2b38088c76e1a5c094d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2045802044 |
| PQPubID | 24069 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2045802044 crossref_primary_10_1016_j_energy_2015_06_081 crossref_citationtrail_10_1016_j_energy_2015_06_081 elsevier_sciencedirect_doi_10_1016_j_energy_2015_06_081 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Wang, Yang (bib22) 2013; 38 Sun, Wang, Srinivasan, Bi (bib26) 2014; 62 Bi, Srinivasan, Lu, Sun, Zeng (bib27) 2014; 41 Ohenoja, Leiviska (bib15) 2010; 35 Das, Mandal, Mukherjee (bib34) 2014; 44 Pinto, Sousa, Fernandes, Pinto, Rangel (bib5) 2013; 49 Sherman, Visscher (bib35) 2002; 419 Mo, Zhu, Wei, Cao (bib14) 2006; 30 Vesterstrom, Thomsen (bib28) 2004; 2 Sun, Zhang, Tsang (bib32) 2005; 169 Brest, Greiner, Boskovic, Mernik, Zumer (bib33) 2006; 10 Mann, Amphlett, Hooper, Jensen, Peppley, Roberge (bib8) 2000; 86 Pukrushpan, Stefanopoulou, Peng (bib1) 2004; 24 Yang, Wang (bib20) 2012; 37 Liu, Lampinen (bib31) 2005; 9 Correa, Farret, Canha, Simoes (bib10) 2004; 51 Colmenar-Santos, Alberdi-Jimenez, Nasarre-Cortes, Mora-Larramona (bib6) 2014; 68 Larminie, Dicks, McDonald (bib9) 2003; vol. 2 Chakraborty, Abbott, Das (bib17) 2012; 40 Price, Storn, Lampinen (bib29) 2005 Zhu, Wang, Zhang (bib23) 2014; 39 Zhang, Wang (bib21) 2013; 38 Amphlett, Baumert, Mann, Peppley, Roberge, Harris (bib7) 1995; 142 Asl, Rowshanzamir, Eikani (bib12) 2010; 35 Abdollahzadeh, Pascoa, Ranjbar, Esmaili (bib13) 2014; 68 Dong, Wang (bib25) 2012; 45 Ye, Wang, Xu (bib16) 2009; 34 Storn, Price (bib24) 1997; 11 Karaboga, Basturk (bib36) 2007; 39 Djilali (bib11) 2007; 32 Leo, Durango, Navarro (bib3) 2010; 35 Andujar, Segura, Vasallo (bib2) 2008; 33 Gong, Cai (bib18) 2013; 59 Wang, Chen, Mishler, Cho, Adroher (bib4) 2011; 88 Ali, Torn (bib30) 2004; 31 Dai, Chen, Cheng, Li, Jiang, Jia (bib19) 2011; 33 Pukrushpan (10.1016/j.energy.2015.06.081_bib1) 2004; 24 Asl (10.1016/j.energy.2015.06.081_bib12) 2010; 35 Ye (10.1016/j.energy.2015.06.081_bib16) 2009; 34 Yang (10.1016/j.energy.2015.06.081_bib20) 2012; 37 Zhang (10.1016/j.energy.2015.06.081_bib22) 2013; 38 Sun (10.1016/j.energy.2015.06.081_bib32) 2005; 169 Chakraborty (10.1016/j.energy.2015.06.081_bib17) 2012; 40 Vesterstrom (10.1016/j.energy.2015.06.081_bib28) 2004; 2 Gong (10.1016/j.energy.2015.06.081_bib18) 2013; 59 Bi (10.1016/j.energy.2015.06.081_bib27) 2014; 41 Sherman (10.1016/j.energy.2015.06.081_bib35) 2002; 419 Mo (10.1016/j.energy.2015.06.081_bib14) 2006; 30 Wang (10.1016/j.energy.2015.06.081_bib4) 2011; 88 Larminie (10.1016/j.energy.2015.06.081_bib9) 2003; vol. 2 Andujar (10.1016/j.energy.2015.06.081_bib2) 2008; 33 Colmenar-Santos (10.1016/j.energy.2015.06.081_bib6) 2014; 68 Storn (10.1016/j.energy.2015.06.081_bib24) 1997; 11 Price (10.1016/j.energy.2015.06.081_bib29) 2005 Dai (10.1016/j.energy.2015.06.081_bib19) 2011; 33 Ohenoja (10.1016/j.energy.2015.06.081_bib15) 2010; 35 Leo (10.1016/j.energy.2015.06.081_bib3) 2010; 35 Das (10.1016/j.energy.2015.06.081_bib34) 2014; 44 Brest (10.1016/j.energy.2015.06.081_bib33) 2006; 10 Liu (10.1016/j.energy.2015.06.081_bib31) 2005; 9 Amphlett (10.1016/j.energy.2015.06.081_bib7) 1995; 142 Zhu (10.1016/j.energy.2015.06.081_bib23) 2014; 39 Ali (10.1016/j.energy.2015.06.081_bib30) 2004; 31 Sun (10.1016/j.energy.2015.06.081_bib26) 2014; 62 Karaboga (10.1016/j.energy.2015.06.081_bib36) 2007; 39 Djilali (10.1016/j.energy.2015.06.081_bib11) 2007; 32 Pinto (10.1016/j.energy.2015.06.081_bib5) 2013; 49 Zhang (10.1016/j.energy.2015.06.081_bib21) 2013; 38 Abdollahzadeh (10.1016/j.energy.2015.06.081_bib13) 2014; 68 Dong (10.1016/j.energy.2015.06.081_bib25) 2012; 45 Mann (10.1016/j.energy.2015.06.081_bib8) 2000; 86 Correa (10.1016/j.energy.2015.06.081_bib10) 2004; 51 |
| References_xml | – volume: 51 start-page: 1103 year: 2004 end-page: 1112 ident: bib10 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Industrial Electron – volume: 59 start-page: 356 year: 2013 end-page: 364 ident: bib18 article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution publication-title: Energy – volume: 35 start-page: 1633 year: 2010 end-page: 1646 ident: bib12 article-title: Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell publication-title: Energy – volume: 33 start-page: 369 year: 2011 end-page: 376 ident: bib19 article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) publication-title: Int J Electr Power Energy Syst – volume: 45 start-page: 72 year: 2012 end-page: 83 ident: bib25 article-title: A novel hybrid differential evolution approach to scheduling of large-scale zero-wait batch processes with setup times publication-title: Comput Chem Eng – volume: 88 start-page: 981 year: 2011 end-page: 1007 ident: bib4 article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research publication-title: Appl Energy – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: bib36 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm publication-title: J Glob Optim – volume: 86 start-page: 173 year: 2000 end-page: 180 ident: bib8 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J Power Sources – volume: vol. 2 year: 2003 ident: bib9 publication-title: Fuel cell systems explained – volume: 419 start-page: 920 year: 2002 end-page: 922 ident: bib35 article-title: Honeybee colonies achieve fitness through dancing publication-title: Nature – volume: 2 start-page: 1980 year: 2004 end-page: 1987 ident: bib28 article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems publication-title: IEEE Proc Evol Comput – volume: 31 start-page: 1703 year: 2004 end-page: 1725 ident: bib30 article-title: Population set-based global optimization algorithms: some modifications and numerical studies publication-title: Comput Oper Res – volume: 68 start-page: 478 year: 2014 end-page: 494 ident: bib13 article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling publication-title: Energy – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib24 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim – volume: 33 start-page: 813 year: 2008 end-page: 826 ident: bib2 article-title: A suitable model plant for control of the set fuel cell– DC/DC converter publication-title: Renew Energy – volume: 32 start-page: 269 year: 2007 end-page: 280 ident: bib11 article-title: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities publication-title: Energy – volume: 38 start-page: 219 year: 2013 end-page: 228 ident: bib21 article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy – volume: 169 start-page: 249 year: 2005 end-page: 262 ident: bib32 article-title: DE/EDA: a new evolutionary algorithm for global optimization publication-title: Inf Sci – volume: 34 start-page: 981 year: 2009 end-page: 989 ident: bib16 article-title: Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization publication-title: Int J Hydrogen Energy – volume: 49 start-page: 57 year: 2013 end-page: 65 ident: bib5 article-title: Simulation of a stand-alone residential PEMFC power system with sodium borohydride as hydrogen source publication-title: Int J Electr Power Energy Syst – volume: 62 start-page: 19 year: 2014 end-page: 28 ident: bib26 article-title: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm publication-title: Int J Electr Power Energy Syst – volume: 40 start-page: 387 year: 2012 end-page: 399 ident: bib17 article-title: PEM fuel cell modeling using differential evolution publication-title: Energy – volume: 142 start-page: 1 year: 1995 end-page: 8 ident: bib7 article-title: Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell publication-title: J Electrochem Soc – volume: 30 start-page: 585 year: 2006 end-page: 597 ident: bib14 article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm publication-title: Int J Energy Res – volume: 68 start-page: 182 year: 2014 end-page: 190 ident: bib6 article-title: Residual heat use generated by a 12 kw fuel cell in an electric vehicle heating system publication-title: Energy – volume: 39 start-page: 17779 year: 2014 end-page: 17790 ident: bib23 article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy – volume: 44 start-page: 966 year: 2014 end-page: 978 ident: bib34 article-title: An adaptive differential evolution algorithm for global optimization in dynamic environments publication-title: IEEE Trans Cybern – volume: 9 start-page: 448 year: 2005 end-page: 462 ident: bib31 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput – year: 2005 ident: bib29 article-title: Differential evolution a practical approach to global optimization – volume: 38 start-page: 5796 year: 2013 end-page: 5806 ident: bib22 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – volume: 35 start-page: 12618 year: 2010 end-page: 12625 ident: bib15 article-title: Validation of genetic algorithm results in a fuel cell model publication-title: Int J Hydrogen Energy – volume: 41 start-page: 7338 year: 2014 end-page: 7349 ident: bib27 article-title: Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization publication-title: Expert Syst Appl – volume: 35 start-page: 1164 year: 2010 end-page: 1171 ident: bib3 article-title: Exergy analysis of PEM fuel cells for marine applications publication-title: Energy – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: bib33 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans Evol Comput – volume: 24 start-page: 30 year: 2004 end-page: 46 ident: bib1 article-title: Control of fuel cell breathing publication-title: Control Syst IEEE – volume: 37 start-page: 8465 year: 2012 end-page: 8476 ident: bib20 article-title: A novel p systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model publication-title: Int J Hydrogen Energy – volume: 33 start-page: 813 issue: 4 year: 2008 ident: 10.1016/j.energy.2015.06.081_bib2 article-title: A suitable model plant for control of the set fuel cell– DC/DC converter publication-title: Renew Energy doi: 10.1016/j.renene.2007.04.013 – volume: 9 start-page: 448 issue: 6 year: 2005 ident: 10.1016/j.energy.2015.06.081_bib31 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput doi: 10.1007/s00500-004-0363-x – volume: 68 start-page: 478 year: 2014 ident: 10.1016/j.energy.2015.06.081_bib13 article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling publication-title: Energy doi: 10.1016/j.energy.2014.01.075 – volume: 24 start-page: 30 issue: 2 year: 2004 ident: 10.1016/j.energy.2015.06.081_bib1 article-title: Control of fuel cell breathing publication-title: Control Syst IEEE doi: 10.1109/MCS.2004.1275430 – volume: 41 start-page: 7338 year: 2014 ident: 10.1016/j.energy.2015.06.081_bib27 article-title: Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.022 – volume: 68 start-page: 182 year: 2014 ident: 10.1016/j.energy.2015.06.081_bib6 article-title: Residual heat use generated by a 12 kw fuel cell in an electric vehicle heating system publication-title: Energy doi: 10.1016/j.energy.2014.02.092 – volume: 49 start-page: 57 year: 2013 ident: 10.1016/j.energy.2015.06.081_bib5 article-title: Simulation of a stand-alone residential PEMFC power system with sodium borohydride as hydrogen source publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.01.001 – volume: 35 start-page: 1633 issue: 4 year: 2010 ident: 10.1016/j.energy.2015.06.081_bib12 article-title: Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell publication-title: Energy doi: 10.1016/j.energy.2009.12.010 – volume: 86 start-page: 173 issue: 1 year: 2000 ident: 10.1016/j.energy.2015.06.081_bib8 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00484-X – volume: 40 start-page: 387 issue: 1 year: 2012 ident: 10.1016/j.energy.2015.06.081_bib17 article-title: PEM fuel cell modeling using differential evolution publication-title: Energy doi: 10.1016/j.energy.2012.01.039 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.energy.2015.06.081_bib33 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.872133 – volume: 88 start-page: 981 issue: 4 year: 2011 ident: 10.1016/j.energy.2015.06.081_bib4 article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.09.030 – volume: 59 start-page: 356 year: 2013 ident: 10.1016/j.energy.2015.06.081_bib18 article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution publication-title: Energy doi: 10.1016/j.energy.2013.07.005 – volume: 35 start-page: 12618 issue: 22 year: 2010 ident: 10.1016/j.energy.2015.06.081_bib15 article-title: Validation of genetic algorithm results in a fuel cell model publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.07.129 – volume: 62 start-page: 19 year: 2014 ident: 10.1016/j.energy.2015.06.081_bib26 article-title: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.04.022 – volume: 31 start-page: 1703 issue: 10 year: 2004 ident: 10.1016/j.energy.2015.06.081_bib30 article-title: Population set-based global optimization algorithms: some modifications and numerical studies publication-title: Comput Oper Res doi: 10.1016/S0305-0548(03)00116-3 – volume: 51 start-page: 1103 issue: 5 year: 2004 ident: 10.1016/j.energy.2015.06.081_bib10 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Industrial Electron doi: 10.1109/TIE.2004.834972 – volume: 32 start-page: 269 issue: 4 year: 2007 ident: 10.1016/j.energy.2015.06.081_bib11 article-title: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities publication-title: Energy doi: 10.1016/j.energy.2006.08.007 – volume: 30 start-page: 585 issue: 8 year: 2006 ident: 10.1016/j.energy.2015.06.081_bib14 article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm publication-title: Int J Energy Res doi: 10.1002/er.1170 – volume: 39 start-page: 17779 issue: 31 year: 2014 ident: 10.1016/j.energy.2015.06.081_bib23 article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.07.081 – volume: 419 start-page: 920 issue: 6910 year: 2002 ident: 10.1016/j.energy.2015.06.081_bib35 article-title: Honeybee colonies achieve fitness through dancing publication-title: Nature doi: 10.1038/nature01127 – volume: 169 start-page: 249 issue: 3 year: 2005 ident: 10.1016/j.energy.2015.06.081_bib32 article-title: DE/EDA: a new evolutionary algorithm for global optimization publication-title: Inf Sci doi: 10.1016/j.ins.2004.06.009 – volume: 35 start-page: 1164 issue: 2 year: 2010 ident: 10.1016/j.energy.2015.06.081_bib3 article-title: Exergy analysis of PEM fuel cells for marine applications publication-title: Energy doi: 10.1016/j.energy.2009.06.010 – volume: vol. 2 year: 2003 ident: 10.1016/j.energy.2015.06.081_bib9 – volume: 142 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.energy.2015.06.081_bib7 article-title: Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell publication-title: J Electrochem Soc doi: 10.1149/1.2043866 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.energy.2015.06.081_bib36 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 37 start-page: 8465 issue: 10 year: 2012 ident: 10.1016/j.energy.2015.06.081_bib20 article-title: A novel p systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.131 – volume: 45 start-page: 72 year: 2012 ident: 10.1016/j.energy.2015.06.081_bib25 article-title: A novel hybrid differential evolution approach to scheduling of large-scale zero-wait batch processes with setup times publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2012.05.008 – year: 2005 ident: 10.1016/j.energy.2015.06.081_bib29 – volume: 38 start-page: 219 issue: 1 year: 2013 ident: 10.1016/j.energy.2015.06.081_bib21 article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.026 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.energy.2015.06.081_bib24 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 34 start-page: 981 issue: 2 year: 2009 ident: 10.1016/j.energy.2015.06.081_bib16 article-title: Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.026 – volume: 33 start-page: 369 issue: 3 year: 2011 ident: 10.1016/j.energy.2015.06.081_bib19 article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2010.08.032 – volume: 2 start-page: 1980 year: 2004 ident: 10.1016/j.energy.2015.06.081_bib28 article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems publication-title: IEEE Proc Evol Comput – volume: 44 start-page: 966 issue: 6 year: 2014 ident: 10.1016/j.energy.2015.06.081_bib34 article-title: An adaptive differential evolution algorithm for global optimization in dynamic environments publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2278188 – volume: 38 start-page: 5796 issue: 14 year: 2013 ident: 10.1016/j.energy.2015.06.081_bib22 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.058 |
| SSID | ssj0005899 |
| Score | 2.5430107 |
| Snippet | In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1334 |
| SubjectTerms | algorithms bees foraging fuel cells Hybrid adaptive DE algorithm Parameter identification probability Proton exchange membrane fuel cell (PEMFC) |
| Title | Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2015.06.081 https://www.proquest.com/docview/2045802044 |
| Volume | 90 |
| WOSCitedRecordID | wos000364245300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF-0J-iL6Onh-cUKvpVIk900m8fj7KGCpXAnFF_C7mZre9ylpUlK_e_d2a-0p3Iq-BLCks2mnV9mJrO_mUHoLVg9RksVpUKWEVWURUJbhijhQ5Uks5kshTTNJrLxmE2n-cTFdGvTTiCrKrbd5qv_Kmo9poUNqbN_Ie5wUz2gz7XQ9VGLXR__SPATDnwrqH24KB0VKLiFk9Hns1Pb_aYP9quEvYL5d8ja6vOSrwyPyPdMaSCYrjbuYfv86ttyvWjm13vBfJs6CDVLt5YmHwIL561RaF_n3e6Pi02Pvbk0wXljBNpq3S7CTNhV2vDaxmbfg1bbDU7EaaC5uYiZz5rpKEo2U2sQpZTuaWHbNNSpUf3hTHdMMhSd-6W6t5GHy3fK_Fgg6qWmGqvtAnOjkPY5rAvLah9YO54ZuYsOkizNWQ8dnHwcTT911CBm-o6G5_Qpl4YX-PNav3Npbhh347FcPEIP3acGPrEQeYzuqOoQ3feZ6PUhOhp1WY76Qqfm6yeIBwzhfQzh5QwbDGGDIWwwhPW4xRD2GMK7GMIBQzhg6Cn6cja6OP0QuV4ckaSUNlFJhFBExRlTuYS6bown-SxLhNAespCMk4yXMYfM5TIRhGnjJbOhinkqBzktY3KEetWyUs8QHgjCB0nOFcklFUMicqrtClUDmSsiWHqMiP87C-kK1UO_lKvCMxIvCyuEAoRQADGTxccoCrNWtlDLLddnXlKFczatE1locN0y840XbKF1MWyw8Uot27qA1g4Mss3p83---wv0oHuRXqJes27VK3RPbppFvX7tkPoD8-20Ew |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+identification+of+PEMFC+model+based+on+hybrid+adaptive+differential+evolution+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Sun%2C+Zhe&rft.au=Wang%2C+Ning&rft.au=Bi%2C+Yunrui&rft.au=Srinivasan%2C+Dipti&rft.date=2015-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=90&rft.spage=1334&rft.epage=1341&rft_id=info:doi/10.1016%2Fj.energy.2015.06.081&rft.externalDocID=S0360544215008373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |