Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm

In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 90; pp. 1334 - 1341
Main Authors: Sun, Zhe, Wang, Ning, Bi, Yunrui, Srinivasan, Dipti
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2015
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. •We propose a hybrid adaptive differential evolution algorithm (HADE).•The search efficiency is enhanced in low and high dimension search space.•The effectiveness is confirmed by testing benchmark functions.•The identification of the PEMFC model is conducted by adopting HADE.
AbstractList In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance.
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. •We propose a hybrid adaptive differential evolution algorithm (HADE).•The search efficiency is enhanced in low and high dimension search space.•The effectiveness is confirmed by testing benchmark functions.•The identification of the PEMFC model is conducted by adopting HADE.
Author Bi, Yunrui
Wang, Ning
Srinivasan, Dipti
Sun, Zhe
Author_xml – sequence: 1
  givenname: Zhe
  surname: Sun
  fullname: Sun, Zhe
  email: jickrey@163.com, nwang@iipc.zju.edu.cn
  organization: National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, PR China
– sequence: 2
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  organization: National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, PR China
– sequence: 3
  givenname: Yunrui
  surname: Bi
  fullname: Bi, Yunrui
  organization: School of Automation, Southeast University, Nanjing 210096, PR China
– sequence: 4
  givenname: Dipti
  surname: Srinivasan
  fullname: Srinivasan, Dipti
  organization: Department of Electrical Computer Engineering, National University of Singapore, 117576, Singapore
BookMark eNqFkLtOxDAQRV2AxPMPKFzSbBgnTuJQIKEVLwkEBdTWxJ6AV0m82N6V9u_JslQU0MyVRvfc4hyxvdGPxNiZgEyAqC4WGY0U3jdZDqLMoMpAiT12CEUFs1LK_IAdxbgAgFI1zSHDFww4UKLAnaUxuc4ZTM6P3Hf85ebpds4Hb6nnLUayfPp_bNrgLEeLy-TWxK3rOgpbFHtOa9-vvnHs331w6WM4Yfsd9pFOf_KYvd3evM7vZ4_Pdw_z68eZkVKmmS3algoStaLGQDkl5k1X520r8rI1CosarcBK1srmbaFAKVNXJLA00EgrimN2vttdBv-5opj04KKhvseR_CrqHGSpYLpyqspd1QQfY6BOL4MbMGy0AL21qBd6Z1FvLWqo9GRxwi5_Ycalb1kpoOv_g692ME0O1o6CjsbRaMi6QCZp693fA1_RIZX0
CitedBy_id crossref_primary_10_1016_j_est_2024_114979
crossref_primary_10_3390_en11082099
crossref_primary_10_1016_j_egyr_2020_05_024
crossref_primary_10_1002_er_4809
crossref_primary_10_1155_2022_6951849
crossref_primary_10_1016_j_jpowsour_2018_01_075
crossref_primary_10_1007_s00202_020_01103_6
crossref_primary_10_1016_j_energy_2017_01_078
crossref_primary_10_1016_j_ijhydene_2025_150100
crossref_primary_10_1016_j_enconman_2024_118371
crossref_primary_10_1016_j_energy_2018_10_038
crossref_primary_10_1002_ceat_202300378
crossref_primary_10_1016_j_enconman_2018_08_039
crossref_primary_10_1016_j_energy_2024_130601
crossref_primary_10_3390_en12101884
crossref_primary_10_1016_j_energy_2018_01_065
crossref_primary_10_1016_j_renene_2024_120890
crossref_primary_10_3390_pr9081416
crossref_primary_10_1016_j_energy_2021_122096
crossref_primary_10_1109_ACCESS_2019_2913017
crossref_primary_10_2298_TSCI220912062L
crossref_primary_10_1016_j_egyr_2023_11_007
crossref_primary_10_3390_su15086676
crossref_primary_10_1016_j_energy_2022_124454
crossref_primary_10_1007_s11581_025_06521_9
crossref_primary_10_1016_j_ijhydene_2022_12_106
crossref_primary_10_1002_er_7103
crossref_primary_10_1002_er_8437
crossref_primary_10_1016_j_energy_2021_119836
crossref_primary_10_1007_s11581_024_05999_z
crossref_primary_10_1016_j_enconman_2017_01_014
crossref_primary_10_1016_j_ijhydene_2022_08_024
crossref_primary_10_1007_s11581_024_05931_5
crossref_primary_10_1016_j_egyr_2021_09_145
crossref_primary_10_1016_j_energy_2017_11_014
crossref_primary_10_1016_j_ijhydene_2018_01_020
crossref_primary_10_1016_j_apenergy_2024_123297
crossref_primary_10_1007_s40095_022_00483_8
crossref_primary_10_1016_j_enconman_2020_113777
crossref_primary_10_1007_s40815_020_00883_0
crossref_primary_10_1016_j_jpowsour_2016_06_039
crossref_primary_10_1016_j_renene_2024_122319
crossref_primary_10_1038_s41598_024_81160_0
crossref_primary_10_1038_s41598_025_87695_0
crossref_primary_10_1002_er_7576
crossref_primary_10_1016_j_jpowsour_2017_04_068
crossref_primary_10_1007_s41939_024_00575_4
crossref_primary_10_1016_j_rser_2018_05_017
crossref_primary_10_3390_en16124743
crossref_primary_10_1016_j_energy_2019_116616
crossref_primary_10_1016_j_measurement_2025_116917
crossref_primary_10_1016_j_ijhydene_2016_07_034
crossref_primary_10_1016_j_egyr_2022_11_047
crossref_primary_10_1007_s10706_018_0634_4
crossref_primary_10_1016_j_egyr_2019_09_039
crossref_primary_10_1515_eng_2020_0088
crossref_primary_10_1002_fuce_201800025
crossref_primary_10_1016_j_ijhydene_2016_11_151
crossref_primary_10_1002_fuce_70011
crossref_primary_10_1016_j_egyr_2025_05_071
crossref_primary_10_1108_COMPEL_12_2019_0495
crossref_primary_10_1007_s11831_022_09825_5
crossref_primary_10_1016_j_renene_2020_12_131
crossref_primary_10_1007_s00521_021_05821_1
crossref_primary_10_1016_j_enconman_2020_112501
crossref_primary_10_1080_01430750_2020_1842240
crossref_primary_10_1016_j_energy_2017_09_067
crossref_primary_10_1016_j_energy_2022_123830
crossref_primary_10_1016_j_energy_2019_116614
crossref_primary_10_1002_er_6987
crossref_primary_10_1016_j_energy_2025_135397
crossref_primary_10_1007_s11581_024_05963_x
crossref_primary_10_1016_j_apenergy_2018_02_071
crossref_primary_10_1016_j_ijhydene_2023_05_347
crossref_primary_10_1016_j_energy_2016_04_093
crossref_primary_10_1109_ACCESS_2023_3236023
crossref_primary_10_1002_ente_202000007
crossref_primary_10_1016_j_enconman_2019_112204
crossref_primary_10_1016_j_energy_2017_05_035
crossref_primary_10_1016_j_energy_2016_05_057
crossref_primary_10_1016_j_ijhydene_2022_09_141
crossref_primary_10_1007_s11581_025_06313_1
crossref_primary_10_1109_ACCESS_2025_3580704
crossref_primary_10_3390_en16145290
crossref_primary_10_1016_j_energy_2018_01_029
crossref_primary_10_3390_app11052052
crossref_primary_10_1016_j_engappai_2019_07_019
crossref_primary_10_1016_j_ijhydene_2021_01_076
crossref_primary_10_3390_su15064982
crossref_primary_10_1007_s00521_020_05581_4
crossref_primary_10_1038_s41598_020_74228_0
crossref_primary_10_1016_j_ijhydene_2021_03_105
crossref_primary_10_1049_iet_rpg_2017_0232
crossref_primary_10_1002_er_5244
crossref_primary_10_1007_s00521_020_05333_4
crossref_primary_10_1109_ACCESS_2020_2973351
crossref_primary_10_3390_app10155110
crossref_primary_10_1038_s41598_024_83538_6
crossref_primary_10_1016_j_fuel_2022_127080
crossref_primary_10_1016_j_enconman_2019_112197
crossref_primary_10_1016_j_seta_2024_103673
crossref_primary_10_1109_ACCESS_2018_2869217
crossref_primary_10_1016_j_egyr_2020_06_011
crossref_primary_10_1049_rpg2_12621
crossref_primary_10_3390_en14165022
crossref_primary_10_1109_TIA_2021_3116549
crossref_primary_10_1016_j_egyr_2024_05_057
crossref_primary_10_1016_j_jclepro_2020_121660
crossref_primary_10_1016_j_fuel_2023_129589
crossref_primary_10_1109_ACCESS_2020_3021754
crossref_primary_10_1109_ACCESS_2018_2872062
crossref_primary_10_1016_j_ijhydene_2021_04_130
crossref_primary_10_1016_j_ijhydene_2018_11_140
crossref_primary_10_1016_j_ijhydene_2020_11_119
crossref_primary_10_1016_j_enconman_2020_113341
crossref_primary_10_1002_er_4424
crossref_primary_10_1016_j_egyr_2019_11_013
crossref_primary_10_3390_computers7040060
crossref_primary_10_1016_j_energy_2019_06_152
crossref_primary_10_1016_j_renene_2019_12_105
crossref_primary_10_1049_rpg2_12359
crossref_primary_10_1016_j_egyr_2020_04_013
crossref_primary_10_1016_j_energy_2019_02_106
crossref_primary_10_3390_su12198127
crossref_primary_10_1016_j_eswa_2024_125601
crossref_primary_10_1007_s10973_020_10370_1
crossref_primary_10_3390_su151310590
crossref_primary_10_1016_j_asoc_2023_110791
crossref_primary_10_1002_fuce_201900155
crossref_primary_10_1016_j_energy_2023_128935
crossref_primary_10_1016_j_eswa_2023_121904
crossref_primary_10_1016_j_egyr_2020_06_002
crossref_primary_10_1080_01430750_2025_2469531
crossref_primary_10_1016_j_energy_2025_136079
crossref_primary_10_1016_j_ijhydene_2024_12_445
crossref_primary_10_3390_pr9101808
Cites_doi 10.1016/j.renene.2007.04.013
10.1007/s00500-004-0363-x
10.1016/j.energy.2014.01.075
10.1109/MCS.2004.1275430
10.1016/j.eswa.2014.06.022
10.1016/j.energy.2014.02.092
10.1016/j.ijepes.2013.01.001
10.1016/j.energy.2009.12.010
10.1016/S0378-7753(99)00484-X
10.1016/j.energy.2012.01.039
10.1109/TEVC.2006.872133
10.1016/j.apenergy.2010.09.030
10.1016/j.energy.2013.07.005
10.1016/j.ijhydene.2010.07.129
10.1016/j.ijepes.2014.04.022
10.1016/S0305-0548(03)00116-3
10.1109/TIE.2004.834972
10.1016/j.energy.2006.08.007
10.1002/er.1170
10.1016/j.ijhydene.2014.07.081
10.1038/nature01127
10.1016/j.ins.2004.06.009
10.1016/j.energy.2009.06.010
10.1149/1.2043866
10.1007/s10898-007-9149-x
10.1016/j.ijhydene.2012.02.131
10.1016/j.compchemeng.2012.05.008
10.1016/j.ijhydene.2012.10.026
10.1023/A:1008202821328
10.1016/j.ijhydene.2008.11.026
10.1016/j.ijepes.2010.08.032
10.1109/TCYB.2013.2278188
10.1016/j.ijhydene.2013.01.058
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2015.06.081
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 1341
ExternalDocumentID 10_1016_j_energy_2015_06_081
S0360544215008373
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c444t-d3bbe3e178e9c05178a29f72bb125bc8a37ad1a6478d2b38088c76e1a5c094d13
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364245300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sat Sep 27 18:48:15 EDT 2025
Sat Nov 29 07:22:14 EST 2025
Tue Nov 18 22:18:58 EST 2025
Fri Feb 23 02:20:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parameter identification
Hybrid adaptive DE algorithm
Proton exchange membrane fuel cell (PEMFC)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-d3bbe3e178e9c05178a29f72bb125bc8a37ad1a6478d2b38088c76e1a5c094d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2045802044
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2045802044
crossref_primary_10_1016_j_energy_2015_06_081
crossref_citationtrail_10_1016_j_energy_2015_06_081
elsevier_sciencedirect_doi_10_1016_j_energy_2015_06_081
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Wang, Yang (bib22) 2013; 38
Sun, Wang, Srinivasan, Bi (bib26) 2014; 62
Bi, Srinivasan, Lu, Sun, Zeng (bib27) 2014; 41
Ohenoja, Leiviska (bib15) 2010; 35
Das, Mandal, Mukherjee (bib34) 2014; 44
Pinto, Sousa, Fernandes, Pinto, Rangel (bib5) 2013; 49
Sherman, Visscher (bib35) 2002; 419
Mo, Zhu, Wei, Cao (bib14) 2006; 30
Vesterstrom, Thomsen (bib28) 2004; 2
Sun, Zhang, Tsang (bib32) 2005; 169
Brest, Greiner, Boskovic, Mernik, Zumer (bib33) 2006; 10
Mann, Amphlett, Hooper, Jensen, Peppley, Roberge (bib8) 2000; 86
Pukrushpan, Stefanopoulou, Peng (bib1) 2004; 24
Yang, Wang (bib20) 2012; 37
Liu, Lampinen (bib31) 2005; 9
Correa, Farret, Canha, Simoes (bib10) 2004; 51
Colmenar-Santos, Alberdi-Jimenez, Nasarre-Cortes, Mora-Larramona (bib6) 2014; 68
Larminie, Dicks, McDonald (bib9) 2003; vol. 2
Chakraborty, Abbott, Das (bib17) 2012; 40
Price, Storn, Lampinen (bib29) 2005
Zhu, Wang, Zhang (bib23) 2014; 39
Zhang, Wang (bib21) 2013; 38
Amphlett, Baumert, Mann, Peppley, Roberge, Harris (bib7) 1995; 142
Asl, Rowshanzamir, Eikani (bib12) 2010; 35
Abdollahzadeh, Pascoa, Ranjbar, Esmaili (bib13) 2014; 68
Dong, Wang (bib25) 2012; 45
Ye, Wang, Xu (bib16) 2009; 34
Storn, Price (bib24) 1997; 11
Karaboga, Basturk (bib36) 2007; 39
Djilali (bib11) 2007; 32
Leo, Durango, Navarro (bib3) 2010; 35
Andujar, Segura, Vasallo (bib2) 2008; 33
Gong, Cai (bib18) 2013; 59
Wang, Chen, Mishler, Cho, Adroher (bib4) 2011; 88
Ali, Torn (bib30) 2004; 31
Dai, Chen, Cheng, Li, Jiang, Jia (bib19) 2011; 33
Pukrushpan (10.1016/j.energy.2015.06.081_bib1) 2004; 24
Asl (10.1016/j.energy.2015.06.081_bib12) 2010; 35
Ye (10.1016/j.energy.2015.06.081_bib16) 2009; 34
Yang (10.1016/j.energy.2015.06.081_bib20) 2012; 37
Zhang (10.1016/j.energy.2015.06.081_bib22) 2013; 38
Sun (10.1016/j.energy.2015.06.081_bib32) 2005; 169
Chakraborty (10.1016/j.energy.2015.06.081_bib17) 2012; 40
Vesterstrom (10.1016/j.energy.2015.06.081_bib28) 2004; 2
Gong (10.1016/j.energy.2015.06.081_bib18) 2013; 59
Bi (10.1016/j.energy.2015.06.081_bib27) 2014; 41
Sherman (10.1016/j.energy.2015.06.081_bib35) 2002; 419
Mo (10.1016/j.energy.2015.06.081_bib14) 2006; 30
Wang (10.1016/j.energy.2015.06.081_bib4) 2011; 88
Larminie (10.1016/j.energy.2015.06.081_bib9) 2003; vol. 2
Andujar (10.1016/j.energy.2015.06.081_bib2) 2008; 33
Colmenar-Santos (10.1016/j.energy.2015.06.081_bib6) 2014; 68
Storn (10.1016/j.energy.2015.06.081_bib24) 1997; 11
Price (10.1016/j.energy.2015.06.081_bib29) 2005
Dai (10.1016/j.energy.2015.06.081_bib19) 2011; 33
Ohenoja (10.1016/j.energy.2015.06.081_bib15) 2010; 35
Leo (10.1016/j.energy.2015.06.081_bib3) 2010; 35
Das (10.1016/j.energy.2015.06.081_bib34) 2014; 44
Brest (10.1016/j.energy.2015.06.081_bib33) 2006; 10
Liu (10.1016/j.energy.2015.06.081_bib31) 2005; 9
Amphlett (10.1016/j.energy.2015.06.081_bib7) 1995; 142
Zhu (10.1016/j.energy.2015.06.081_bib23) 2014; 39
Ali (10.1016/j.energy.2015.06.081_bib30) 2004; 31
Sun (10.1016/j.energy.2015.06.081_bib26) 2014; 62
Karaboga (10.1016/j.energy.2015.06.081_bib36) 2007; 39
Djilali (10.1016/j.energy.2015.06.081_bib11) 2007; 32
Pinto (10.1016/j.energy.2015.06.081_bib5) 2013; 49
Zhang (10.1016/j.energy.2015.06.081_bib21) 2013; 38
Abdollahzadeh (10.1016/j.energy.2015.06.081_bib13) 2014; 68
Dong (10.1016/j.energy.2015.06.081_bib25) 2012; 45
Mann (10.1016/j.energy.2015.06.081_bib8) 2000; 86
Correa (10.1016/j.energy.2015.06.081_bib10) 2004; 51
References_xml – volume: 51
  start-page: 1103
  year: 2004
  end-page: 1112
  ident: bib10
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Industrial Electron
– volume: 59
  start-page: 356
  year: 2013
  end-page: 364
  ident: bib18
  article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution
  publication-title: Energy
– volume: 35
  start-page: 1633
  year: 2010
  end-page: 1646
  ident: bib12
  article-title: Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell
  publication-title: Energy
– volume: 33
  start-page: 369
  year: 2011
  end-page: 376
  ident: bib19
  article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC)
  publication-title: Int J Electr Power Energy Syst
– volume: 45
  start-page: 72
  year: 2012
  end-page: 83
  ident: bib25
  article-title: A novel hybrid differential evolution approach to scheduling of large-scale zero-wait batch processes with setup times
  publication-title: Comput Chem Eng
– volume: 88
  start-page: 981
  year: 2011
  end-page: 1007
  ident: bib4
  article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research
  publication-title: Appl Energy
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib36
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm
  publication-title: J Glob Optim
– volume: 86
  start-page: 173
  year: 2000
  end-page: 180
  ident: bib8
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
– volume: vol. 2
  year: 2003
  ident: bib9
  publication-title: Fuel cell systems explained
– volume: 419
  start-page: 920
  year: 2002
  end-page: 922
  ident: bib35
  article-title: Honeybee colonies achieve fitness through dancing
  publication-title: Nature
– volume: 2
  start-page: 1980
  year: 2004
  end-page: 1987
  ident: bib28
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: IEEE Proc Evol Comput
– volume: 31
  start-page: 1703
  year: 2004
  end-page: 1725
  ident: bib30
  article-title: Population set-based global optimization algorithms: some modifications and numerical studies
  publication-title: Comput Oper Res
– volume: 68
  start-page: 478
  year: 2014
  end-page: 494
  ident: bib13
  article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling
  publication-title: Energy
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib24
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
– volume: 33
  start-page: 813
  year: 2008
  end-page: 826
  ident: bib2
  article-title: A suitable model plant for control of the set fuel cell– DC/DC converter
  publication-title: Renew Energy
– volume: 32
  start-page: 269
  year: 2007
  end-page: 280
  ident: bib11
  article-title: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities
  publication-title: Energy
– volume: 38
  start-page: 219
  year: 2013
  end-page: 228
  ident: bib21
  article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 169
  start-page: 249
  year: 2005
  end-page: 262
  ident: bib32
  article-title: DE/EDA: a new evolutionary algorithm for global optimization
  publication-title: Inf Sci
– volume: 34
  start-page: 981
  year: 2009
  end-page: 989
  ident: bib16
  article-title: Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
  publication-title: Int J Hydrogen Energy
– volume: 49
  start-page: 57
  year: 2013
  end-page: 65
  ident: bib5
  article-title: Simulation of a stand-alone residential PEMFC power system with sodium borohydride as hydrogen source
  publication-title: Int J Electr Power Energy Syst
– volume: 62
  start-page: 19
  year: 2014
  end-page: 28
  ident: bib26
  article-title: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 40
  start-page: 387
  year: 2012
  end-page: 399
  ident: bib17
  article-title: PEM fuel cell modeling using differential evolution
  publication-title: Energy
– volume: 142
  start-page: 1
  year: 1995
  end-page: 8
  ident: bib7
  article-title: Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell
  publication-title: J Electrochem Soc
– volume: 30
  start-page: 585
  year: 2006
  end-page: 597
  ident: bib14
  article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm
  publication-title: Int J Energy Res
– volume: 68
  start-page: 182
  year: 2014
  end-page: 190
  ident: bib6
  article-title: Residual heat use generated by a 12 kw fuel cell in an electric vehicle heating system
  publication-title: Energy
– volume: 39
  start-page: 17779
  year: 2014
  end-page: 17790
  ident: bib23
  article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 966
  year: 2014
  end-page: 978
  ident: bib34
  article-title: An adaptive differential evolution algorithm for global optimization in dynamic environments
  publication-title: IEEE Trans Cybern
– volume: 9
  start-page: 448
  year: 2005
  end-page: 462
  ident: bib31
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput
– year: 2005
  ident: bib29
  article-title: Differential evolution a practical approach to global optimization
– volume: 38
  start-page: 5796
  year: 2013
  end-page: 5806
  ident: bib22
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 35
  start-page: 12618
  year: 2010
  end-page: 12625
  ident: bib15
  article-title: Validation of genetic algorithm results in a fuel cell model
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 7338
  year: 2014
  end-page: 7349
  ident: bib27
  article-title: Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization
  publication-title: Expert Syst Appl
– volume: 35
  start-page: 1164
  year: 2010
  end-page: 1171
  ident: bib3
  article-title: Exergy analysis of PEM fuel cells for marine applications
  publication-title: Energy
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: bib33
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans Evol Comput
– volume: 24
  start-page: 30
  year: 2004
  end-page: 46
  ident: bib1
  article-title: Control of fuel cell breathing
  publication-title: Control Syst IEEE
– volume: 37
  start-page: 8465
  year: 2012
  end-page: 8476
  ident: bib20
  article-title: A novel p systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model
  publication-title: Int J Hydrogen Energy
– volume: 33
  start-page: 813
  issue: 4
  year: 2008
  ident: 10.1016/j.energy.2015.06.081_bib2
  article-title: A suitable model plant for control of the set fuel cell– DC/DC converter
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.04.013
– volume: 9
  start-page: 448
  issue: 6
  year: 2005
  ident: 10.1016/j.energy.2015.06.081_bib31
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-004-0363-x
– volume: 68
  start-page: 478
  year: 2014
  ident: 10.1016/j.energy.2015.06.081_bib13
  article-title: Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.075
– volume: 24
  start-page: 30
  issue: 2
  year: 2004
  ident: 10.1016/j.energy.2015.06.081_bib1
  article-title: Control of fuel cell breathing
  publication-title: Control Syst IEEE
  doi: 10.1109/MCS.2004.1275430
– volume: 41
  start-page: 7338
  year: 2014
  ident: 10.1016/j.energy.2015.06.081_bib27
  article-title: Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.06.022
– volume: 68
  start-page: 182
  year: 2014
  ident: 10.1016/j.energy.2015.06.081_bib6
  article-title: Residual heat use generated by a 12 kw fuel cell in an electric vehicle heating system
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.092
– volume: 49
  start-page: 57
  year: 2013
  ident: 10.1016/j.energy.2015.06.081_bib5
  article-title: Simulation of a stand-alone residential PEMFC power system with sodium borohydride as hydrogen source
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.01.001
– volume: 35
  start-page: 1633
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2015.06.081_bib12
  article-title: Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.010
– volume: 86
  start-page: 173
  issue: 1
  year: 2000
  ident: 10.1016/j.energy.2015.06.081_bib8
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00484-X
– volume: 40
  start-page: 387
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2015.06.081_bib17
  article-title: PEM fuel cell modeling using differential evolution
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.039
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.energy.2015.06.081_bib33
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.872133
– volume: 88
  start-page: 981
  issue: 4
  year: 2011
  ident: 10.1016/j.energy.2015.06.081_bib4
  article-title: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.09.030
– volume: 59
  start-page: 356
  year: 2013
  ident: 10.1016/j.energy.2015.06.081_bib18
  article-title: Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.005
– volume: 35
  start-page: 12618
  issue: 22
  year: 2010
  ident: 10.1016/j.energy.2015.06.081_bib15
  article-title: Validation of genetic algorithm results in a fuel cell model
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.07.129
– volume: 62
  start-page: 19
  year: 2014
  ident: 10.1016/j.energy.2015.06.081_bib26
  article-title: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.022
– volume: 31
  start-page: 1703
  issue: 10
  year: 2004
  ident: 10.1016/j.energy.2015.06.081_bib30
  article-title: Population set-based global optimization algorithms: some modifications and numerical studies
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(03)00116-3
– volume: 51
  start-page: 1103
  issue: 5
  year: 2004
  ident: 10.1016/j.energy.2015.06.081_bib10
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Industrial Electron
  doi: 10.1109/TIE.2004.834972
– volume: 32
  start-page: 269
  issue: 4
  year: 2007
  ident: 10.1016/j.energy.2015.06.081_bib11
  article-title: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities
  publication-title: Energy
  doi: 10.1016/j.energy.2006.08.007
– volume: 30
  start-page: 585
  issue: 8
  year: 2006
  ident: 10.1016/j.energy.2015.06.081_bib14
  article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm
  publication-title: Int J Energy Res
  doi: 10.1002/er.1170
– volume: 39
  start-page: 17779
  issue: 31
  year: 2014
  ident: 10.1016/j.energy.2015.06.081_bib23
  article-title: Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.07.081
– volume: 419
  start-page: 920
  issue: 6910
  year: 2002
  ident: 10.1016/j.energy.2015.06.081_bib35
  article-title: Honeybee colonies achieve fitness through dancing
  publication-title: Nature
  doi: 10.1038/nature01127
– volume: 169
  start-page: 249
  issue: 3
  year: 2005
  ident: 10.1016/j.energy.2015.06.081_bib32
  article-title: DE/EDA: a new evolutionary algorithm for global optimization
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2004.06.009
– volume: 35
  start-page: 1164
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2015.06.081_bib3
  article-title: Exergy analysis of PEM fuel cells for marine applications
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.010
– volume: vol. 2
  year: 2003
  ident: 10.1016/j.energy.2015.06.081_bib9
– volume: 142
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.energy.2015.06.081_bib7
  article-title: Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2043866
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.energy.2015.06.081_bib36
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 37
  start-page: 8465
  issue: 10
  year: 2012
  ident: 10.1016/j.energy.2015.06.081_bib20
  article-title: A novel p systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.131
– volume: 45
  start-page: 72
  year: 2012
  ident: 10.1016/j.energy.2015.06.081_bib25
  article-title: A novel hybrid differential evolution approach to scheduling of large-scale zero-wait batch processes with setup times
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2012.05.008
– year: 2005
  ident: 10.1016/j.energy.2015.06.081_bib29
– volume: 38
  start-page: 219
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2015.06.081_bib21
  article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.026
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.energy.2015.06.081_bib24
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 34
  start-page: 981
  issue: 2
  year: 2009
  ident: 10.1016/j.energy.2015.06.081_bib16
  article-title: Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.026
– volume: 33
  start-page: 369
  issue: 3
  year: 2011
  ident: 10.1016/j.energy.2015.06.081_bib19
  article-title: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC)
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.08.032
– volume: 2
  start-page: 1980
  year: 2004
  ident: 10.1016/j.energy.2015.06.081_bib28
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: IEEE Proc Evol Comput
– volume: 44
  start-page: 966
  issue: 6
  year: 2014
  ident: 10.1016/j.energy.2015.06.081_bib34
  article-title: An adaptive differential evolution algorithm for global optimization in dynamic environments
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2278188
– volume: 38
  start-page: 5796
  issue: 14
  year: 2013
  ident: 10.1016/j.energy.2015.06.081_bib22
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.058
SSID ssj0005899
Score 2.5430763
Snippet In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1334
SubjectTerms algorithms
bees
foraging
fuel cells
Hybrid adaptive DE algorithm
Parameter identification
probability
Proton exchange membrane fuel cell (PEMFC)
Title Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
URI https://dx.doi.org/10.1016/j.energy.2015.06.081
https://www.proquest.com/docview/2045802044
Volume 90
WOSCitedRecordID wos000364245300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqDgleEAwmxpeMxFsVVOfLzuM0OgGCqhIDVbxETuzQTiWtmqTqHvef47Mdpx0fYw-8RJUVW07u17vL-Xd3CL2O4ySSJGeeKJLAC4lfeCwoiCdkHDNlfyTVAbevH-l4zKbTZNLrXbW5MJsFLUu23Sar_ypqNaaEDamztxC3W1QNqN9K6OqqxK6u_yT4CQe-FdQ-nAtLBXJu4WT06ezUdL8ZgP0ScFYwu4SsrQEXfKV5RG3PlBqC6XJjNzvgi-_L9bye_dgL5pvUQahZujU0eRdY-NxohfZt1p3-2Nj0uDWXOjivjUBTrpu5mwmnShtemdjsW9Bqu8EJEjmaW5eUNfSiMNxTuKY_qNWY6hs53LG-UF_ut5rdBBku3kj9XMDJi3ThVdPwZb-Q9jUD52iHLaPtIjWrpLBKCsQ-SN4_8GmUsD46OHk_mn7oeEJMNyF1T9LmX2qS4K-7-ZN_c83Sa_fl_AG6b7878InBy0PUk-UhutumpVeH6GjUpTyqG63Orx4h7gCF9wGFlwXWgMIaUFgDCqtxAyjcAgrvAgo7QGEHqMfoy9no_PSdZxtzeHkYhrUngiyTgSSUySSHIm-M-0lB_SxT7nKWMx5QLgiHNGbhZwFTliynsSQ8yodJKEhwhPrlspRPEOZcxETkPCIFD6OCZBHQQjgbFoz6vgiOUdC-zjS3Veuhecoi_Zswj5HnZq1M1ZYb7qetpFLreRqPMlXwu2Hmq1awqVLMcNrGS7lsqhT6PDBIPQ-f3nI3z9C97r_0HPXrdSNfoDv5pp5X65cWnz8BiZO0Kw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+identification+of+PEMFC+model+based+on+hybrid+adaptive+differential+evolution+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Sun%2C+Zhe&rft.au=Wang%2C+Ning&rft.au=Bi%2C+Yunrui&rft.au=Srinivasan%2C+Dipti&rft.date=2015-10-01&rft.issn=0360-5442&rft.volume=90&rft.spage=1334&rft.epage=1341&rft_id=info:doi/10.1016%2Fj.energy.2015.06.081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2015_06_081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon