Multiple faults diagnosis for ocean-going marine diesel engines based on different neural network algorithms

Fault diagnosis technologies for ocean-going marine diesel engines play an important role in the safety and reliability of ship navigation. Although many fault diagnosis technologies have achieved acceptable results for single fault of diesel engines, the diagnosis of multiple faults is rarely invol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science progress (1916) Jg. 106; H. 4; S. 368504231212765
Hauptverfasser: Zhu, Guoqing, Huang, Lin, Yin, Jiapeng, Gai, Wen, Wei, Lijiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London, England SAGE Publications 01.10.2023
Sage Publications Ltd
Schlagworte:
ISSN:0036-8504, 2047-7163, 2047-7163
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fault diagnosis technologies for ocean-going marine diesel engines play an important role in the safety and reliability of ship navigation. Although many fault diagnosis technologies have achieved acceptable results for single fault of diesel engines, the diagnosis of multiple faults is rarely involved. Due to the strong correlation, non-linearity and randomness of multiple faults, it is extremely difficult to make an accurate diagnosis. In this study, diagnosis methods based on thermal parametric analysis combined with different neural network algorithms were established and used for the diagnosis of multiple faults in the ocean-going marine diesel engine. The results show that the Levenberg Marquardt back propagation neural network has the highest diagnostic accuracy rate of 88.89% and 100% for multiple faults and single faults, respectively, and its diagnostic time is also relatively short, 0.78 s. The Bayesian regularization back propagation neural network can give a diagnostic accuracy rate of 100% for single faults, but for multiple faults, the diagnostic accuracy rate is only 55.56%, and the diagnosis time for the entire sample is the longest. As for the probabilistic neural network, although it has the fastest diagnosis speed, it has the lowest diagnostic accuracy rate for both single faults and multiple faults. The results may provide references for the online diagnosis of single faults and multiple faults in ocean-going marine diesel engines.
AbstractList Fault diagnosis technologies for ocean-going marine diesel engines play an important role in the safety and reliability of ship navigation. Although many fault diagnosis technologies have achieved acceptable results for single fault of diesel engines, the diagnosis of multiple faults is rarely involved. Due to the strong correlation, non-linearity and randomness of multiple faults, it is extremely difficult to make an accurate diagnosis. In this study, diagnosis methods based on thermal parametric analysis combined with different neural network algorithms were established and used for the diagnosis of multiple faults in the ocean-going marine diesel engine. The results show that the Levenberg Marquardt back propagation neural network has the highest diagnostic accuracy rate of 88.89% and 100% for multiple faults and single faults, respectively, and its diagnostic time is also relatively short, 0.78 s. The Bayesian regularization back propagation neural network can give a diagnostic accuracy rate of 100% for single faults, but for multiple faults, the diagnostic accuracy rate is only 55.56%, and the diagnosis time for the entire sample is the longest. As for the probabilistic neural network, although it has the fastest diagnosis speed, it has the lowest diagnostic accuracy rate for both single faults and multiple faults. The results may provide references for the online diagnosis of single faults and multiple faults in ocean-going marine diesel engines.Fault diagnosis technologies for ocean-going marine diesel engines play an important role in the safety and reliability of ship navigation. Although many fault diagnosis technologies have achieved acceptable results for single fault of diesel engines, the diagnosis of multiple faults is rarely involved. Due to the strong correlation, non-linearity and randomness of multiple faults, it is extremely difficult to make an accurate diagnosis. In this study, diagnosis methods based on thermal parametric analysis combined with different neural network algorithms were established and used for the diagnosis of multiple faults in the ocean-going marine diesel engine. The results show that the Levenberg Marquardt back propagation neural network has the highest diagnostic accuracy rate of 88.89% and 100% for multiple faults and single faults, respectively, and its diagnostic time is also relatively short, 0.78 s. The Bayesian regularization back propagation neural network can give a diagnostic accuracy rate of 100% for single faults, but for multiple faults, the diagnostic accuracy rate is only 55.56%, and the diagnosis time for the entire sample is the longest. As for the probabilistic neural network, although it has the fastest diagnosis speed, it has the lowest diagnostic accuracy rate for both single faults and multiple faults. The results may provide references for the online diagnosis of single faults and multiple faults in ocean-going marine diesel engines.
Fault diagnosis technologies for ocean-going marine diesel engines play an important role in the safety and reliability of ship navigation. Although many fault diagnosis technologies have achieved acceptable results for single fault of diesel engines, the diagnosis of multiple faults is rarely involved. Due to the strong correlation, non-linearity and randomness of multiple faults, it is extremely difficult to make an accurate diagnosis. In this study, diagnosis methods based on thermal parametric analysis combined with different neural network algorithms were established and used for the diagnosis of multiple faults in the ocean-going marine diesel engine. The results show that the Levenberg Marquardt back propagation neural network has the highest diagnostic accuracy rate of 88.89% and 100% for multiple faults and single faults, respectively, and its diagnostic time is also relatively short, 0.78 s. The Bayesian regularization back propagation neural network can give a diagnostic accuracy rate of 100% for single faults, but for multiple faults, the diagnostic accuracy rate is only 55.56%, and the diagnosis time for the entire sample is the longest. As for the probabilistic neural network, although it has the fastest diagnosis speed, it has the lowest diagnostic accuracy rate for both single faults and multiple faults. The results may provide references for the online diagnosis of single faults and multiple faults in ocean-going marine diesel engines.
Author Wei, Lijiang
Yin, Jiapeng
Huang, Lin
Gai, Wen
Zhu, Guoqing
AuthorAffiliation 2 Simulation Training Center, Naval University of Engineering , Wuhan, China
4 ALFA LAVAL Technology Company, Shanghai, China
3 Merchant Marine College, 12477 Shanghai Maritime University , Shanghai, China
5 College of Information Engineering, 12477 Shanghai Maritime University , Shanghai, China
1 Research Institute of Equipment Simulation Technology, Navy University of Engineering, Wuhan, China
AuthorAffiliation_xml – name: 3 Merchant Marine College, 12477 Shanghai Maritime University , Shanghai, China
– name: 1 Research Institute of Equipment Simulation Technology, Navy University of Engineering, Wuhan, China
– name: 2 Simulation Training Center, Naval University of Engineering , Wuhan, China
– name: 5 College of Information Engineering, 12477 Shanghai Maritime University , Shanghai, China
– name: 4 ALFA LAVAL Technology Company, Shanghai, China
Author_xml – sequence: 1
  givenname: Guoqing
  surname: Zhu
  fullname: Zhu, Guoqing
– sequence: 2
  givenname: Lin
  surname: Huang
  fullname: Huang, Lin
– sequence: 3
  givenname: Jiapeng
  surname: Yin
  fullname: Yin, Jiapeng
– sequence: 4
  givenname: Wen
  surname: Gai
  fullname: Gai, Wen
– sequence: 5
  givenname: Lijiang
  orcidid: 0000-0001-6464-3855
  surname: Wei
  fullname: Wei, Lijiang
  email: ljwei0630@163.com
BookMark eNp9UU1vFSEUJabGvrb-AHckbtxM5WtgZmVMo61JTTd2TYC5TKk8eMKMxn8vL6_GWGPZXC73nMM5uSfoKOUECL2i5JxSpd4SwuXQE8E4ZZQp2T9DG0aE6hSV_Aht9vNuDzhGJ7XeE0J7KocX6JirUcie8Q2Kn9e4hF0E7E27VTwFM6dcQ8U-F5wdmNTNOaQZb00JCRoAKkQMaW5dxdZUmHBO7d17KJAWnGAtJray_MjlKzZxziUsd9t6hp57Eyu8fKin6Pbjhy8XV931zeWni_fXnRNCLF1v-UQcEdSPUipgTHJBYLReWAtWSGvASCeJEcCkclwyO4h-EmwcBjF6wk_Ru4PubrVbmFwz1QzpXQktw0-dTdB_T1K403P-rimRfGinKbx5UCj52wp10dtQHcRoEuS1ajYMIxOSqbFBXz-C3ue1pJZPs7FtgxM2ioZSB5QrudYCXruwmCXkvYEQ2896v1L9z0obkz5i_s7xFOf8wKlmhj9-_k_4BWEzsZU
CitedBy_id crossref_primary_10_15802_stp2025_330872
crossref_primary_10_1016_j_oceaneng_2024_119545
crossref_primary_10_1109_JSEN_2025_3574410
crossref_primary_10_3390_jmse12101792
crossref_primary_10_1155_vib_6278046
crossref_primary_10_1016_j_oceaneng_2025_121319
Cites_doi 10.1016/j.energy.2015.12.020
10.1016/j.protcy.2013.12.157
10.1016/j.neucom.2019.03.092
10.1016/j.applthermaleng.2018.08.096
10.1016/j.aej.2015.06.007
10.1016/S1474-6670(17)37796-0
10.1016/j.ymssp.2009.06.012
10.1016/j.apor.2021.102681
10.1016/S1474-6670(17)30874-1
10.1016/j.measurement.2020.108019
10.3390/jmse8121004
10.1016/j.measurement.2018.04.062
10.1016/j.procs.2018.04.241
10.1016/j.apacoust.2018.09.002
10.1016/j.ymssp.2014.11.007
10.1016/j.dsp.2021.103054
10.1016/j.knosys.2019.105324
10.1016/j.applthermaleng.2020.116343
10.3390/app10155199
10.1016/j.enconman.2009.11.006
10.1115/1.4043138
10.1016/j.ifacol.2016.08.083
10.1016/j.enconman.2016.05.059
ContentType Journal Article
Copyright The Author(s) 2023
2023. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/ ) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023 2023 SAGE Publications
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/ ) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023 2023 SAGE Publications
DBID AFRWT
AAYXX
CITATION
8FD
F28
FR3
JQ2
K9.
7X8
5PM
DOI 10.1177/00368504231212765
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2047-7163
ExternalDocumentID PMC10638888
10_1177_00368504231212765
10.1177_00368504231212765
GrantInformation_xml – fundername: Shanghai High-level Local University Innovation Team (Maritime safety & technical support)
– fundername: National Natural Science Foundation of China
  grantid: 51909154
  funderid: https://doi.org/10.13039/501100001809
– fundername: Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency
  grantid: 20DZ2252300
– fundername: ;
– fundername: ;
  grantid: 51909154
– fundername: ;
  grantid: 20DZ2252300
GroupedDBID ---
-~X
0R~
123
53G
54M
79B
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
AADUE
AAFWJ
AALJN
AARIX
AASGM
ABBHK
ABCQX
ABDBF
ABIWW
ABJCF
ABKRH
ABPVG
ABQXT
ABRHV
ABUWG
ABXSQ
ACDXX
ACIWK
ACLDX
ACOFE
ACPRK
ACPRP
ACROE
ACUHS
ADBBV
ADEBD
ADMLS
ADOGD
ADULT
AEDFJ
AEGXH
AENEX
AETEA
AEUPB
AEUYN
AEWDL
AEXNY
AFCOW
AFKRA
AFKRG
AFPKN
AFRAH
AFRWT
AFUIA
AGNHF
AJUZI
AKJNG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMPZH
AORZM
APEBS
ARAPS
ARTOV
ATCPS
BBNVY
BDDNI
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BVXVI
CAKTK
CCPQU
CFDXU
CS3
CZ9
D1I
D1J
D1K
DOPDO
DU5
EBD
EBS
EHMNL
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HH5
HHL
HMCUK
IL9
IPSME
J8X
JAAYA
JBMMH
JENOY
JFNAL
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
K6V
K7-
KB.
KC.
L6V
L7B
LK5
LK8
M0K
M1P
M7P
M7R
M7S
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
ROL
RPM
RWL
RXW
SA0
SAUOL
SCDPB
SCNPE
SFC
SV3
TAE
UKHRP
UQL
YNT
ZPPRI
ZRKOI
AAYXX
ACHEB
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
8FD
F28
FR3
JQ2
K9.
7X8
5PM
ID FETCH-LOGICAL-c444t-5b3d0c041f9667e226340e9bf4bbeb46baea6c60a4e267c362b845d4298849f03
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001099790300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0036-8504
2047-7163
IngestDate Thu Aug 21 18:36:30 EDT 2025
Thu Sep 04 19:31:28 EDT 2025
Sat Nov 29 14:47:54 EST 2025
Sat Nov 29 08:17:12 EST 2025
Tue Nov 18 22:44:05 EST 2025
Tue Jun 17 22:26:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Marine diesel engine
probabilistic neural network
multiple faults
Levenberg Marquardt back propagation neural network
Bayesian regularization back propagation neural network
diagnosis
neural network
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-5b3d0c041f9667e226340e9bf4bbeb46baea6c60a4e267c362b845d4298849f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6464-3855
OpenAccessLink http://dx.doi.org/10.1177/00368504231212765
PMID 37946523
PQID 2920430294
PQPubID 1586336
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10638888
proquest_miscellaneous_2889246279
proquest_journals_2920430294
crossref_citationtrail_10_1177_00368504231212765
crossref_primary_10_1177_00368504231212765
sage_journals_10_1177_00368504231212765
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
– name: Sage UK: London, England
PublicationTitle Science progress (1916)
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Wei, Yao, Han 2016; 95
Hu, Zhang, Liu 2020; 416
Jafarian, Mobin, Jafari 2018; 128
Jayashankara, Ganesan 2010; 51
Liu, Wen, Wang 2018; 131
Ke, Yao, Song 2021; 114
Wang, Chen, Guan 2021; 112
Huang, Xie, Huang 2014; 36
Nahim, Younes, Shraim 2016; 49
Wei, Wu, Liu 2019; 141
Li, Tse, Yang 2010; 24
Yin, Chen, Guan 2021; 45
Nawi, Khan, Rehman 2013; 11
Duddu, Pulugurtha, Mane 2020; 8
Antonić, Vukić, Kuljača 2003; 36
Castresana, Gabina, Martin 2021; 185
Puchalski 2015; 56–57
Xu, Zhao, Xu 2020; 190
Sala, Tormos, Macian 2004; 37
Cao, Hu, Xie 2020
Rubio, Vera-García, Grau 2018; 144
Hariram, Vagesh Shangar 2015; 54
Han, Hong, Meng 2020; 164
Knežević, Orović, Stazić 2020; 8
Nora, Lanzanova, Zhao 2016; 123
Wan, Yang, Sun 2020; 10
Cheng, Qiao, Jin 2020
Taghizadeh, Mandavian 2019; 143
bibr6-00368504231212765
bibr9-00368504231212765
bibr19-00368504231212765
bibr11-00368504231212765
bibr24-00368504231212765
bibr21-00368504231212765
bibr14-00368504231212765
bibr17-00368504231212765
bibr1-00368504231212765
bibr4-00368504231212765
Cao H (bibr16-00368504231212765) 2020
bibr8-00368504231212765
bibr5-00368504231212765
bibr18-00368504231212765
bibr25-00368504231212765
bibr22-00368504231212765
bibr28-00368504231212765
Duddu VR (bibr27-00368504231212765) 2020; 8
bibr15-00368504231212765
bibr7-00368504231212765
Cheng G (bibr2-00368504231212765) 2020
Yin WL (bibr10-00368504231212765) 2021; 45
bibr26-00368504231212765
bibr3-00368504231212765
Huang JL (bibr12-00368504231212765) 2014; 36
bibr23-00368504231212765
bibr13-00368504231212765
bibr20-00368504231212765
References_xml – start-page: 1
  year: 2020
  end-page: 17
  article-title: A novel fault diagnosis method for diesel engine based on MVMD and band energy
  publication-title: Shock Vib
– volume: 123
  start-page: 71
  year: 2016
  end-page: 83
  article-title: Effects of valve timing, valve lift and exhaust backpressure on performance and gas exchanging of a two-stroke GDI engine with overhead valves
  publication-title: Energy Convers Manage
– volume: 131
  start-page: 495
  year: 2018
  end-page: 501
  article-title: Research on fault diagnosis method of board-level circuit based on genetic algorithm
  publication-title: Procedia Comput Sci
– volume: 36
  start-page: 48
  year: 2014
  end-page: 51
  article-title: Research on thermal fault diagnosis of marine diesel engine based on SPA
  publication-title: Ship Eng
– volume: 56–57
  start-page: 173
  year: 2015
  end-page: 180
  article-title: A technique for the vibration signal analysis in vehicle diagnostics
  publication-title: Mech Syst Signal Process
– volume: 8
  start-page: 1004
  year: 2020
  article-title: Fault tree analysis and failure diagnosis of marine diesel engine turbocharger system
  publication-title: J Mar Sci Eng
– volume: 24
  start-page: 193
  year: 2010
  end-page: 210
  article-title: EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine
  publication-title: Mech Syst Signal Process
– volume: 49
  start-page: 570
  year: 2016
  end-page: 575
  article-title: Modeling with fault integration of the cooling and the lubricating systems in marine diesel engine: experimental validation
  publication-title: IFAC-Papers Online
– volume: 51
  start-page: 1835
  year: 2010
  end-page: 1848
  article-title: Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine – a parametric study using CFD
  publication-title: Energy Convers Manage
– volume: 36
  start-page: 133
  year: 2003
  end-page: 138
  article-title: Marine diesel engine faults diagnosis based on observed symptoms and expert knowledge
  publication-title: IFAC Proc Vol
– volume: 114
  start-page: 103054
  year: 2021
  article-title: Intelligent fault diagnosis method of common rail injector based on composite hierarchical dispersion entropy and improved least squares support vector machine
  publication-title: Digit Signal Process
– volume: 8
  start-page: 100250
  year: 2020
  article-title: Back-propagation neural network model to predict visibility at a road link-level
  publication-title: Transp Res Interdiscip Perspect
– volume: 54
  start-page: 807
  year: 2015
  end-page: 814
  article-title: Influence of compression ratio on combustion and performance characteristics of direct injection compression ignition engine
  publication-title: Alexandria Eng J
– volume: 164
  start-page: 108019
  year: 2020
  article-title: Temperature drift modeling and compensation of capacitive accelerometer based on AGA-BP neural network
  publication-title: Measurement (Mahwah NJ)
– volume: 141
  start-page: 081006
  year: 2019
  article-title: Nitrogen oxides reduction effect and the influence mechanism of exhaust valve lift on a two-stroke marine diesel engine
  publication-title: J Eng Gas Turb Power Trans ASME
– volume: 144
  start-page: 982
  year: 2018
  end-page: 995
  article-title: Marine diesel engine failure simulator based on thermodynamic model
  publication-title: Appl Therm Eng
– volume: 112
  start-page: 102681
  year: 2021
  article-title: Research on the fault monitoring method of marine diesel engines based on the manifold learning and isolation forest
  publication-title: Appl Ocean Res
– start-page: 73
  year: 2020
  end-page: 80
  article-title: Diesel engine fault diagnosis method based on multi-source information fusion
  publication-title: Marine Technology
– volume: 185
  start-page: 116343
  year: 2021
  article-title: Comparative performance and emissions assessments of a single-cylinder diesel engine using artificial neural network and thermodynamic simulation
  publication-title: Appl Therm Eng
– volume: 190
  start-page: 105324
  year: 2020
  article-title: Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models
  publication-title: Knowl Based Syst
– volume: 11
  start-page: 18
  year: 2013
  end-page: 23
  article-title: A new Levenberg Marquardt based back propagation algorithm trained with cuckoo search
  publication-title: Proc Technol
– volume: 128
  start-page: 527
  year: 2018
  end-page: 536
  article-title: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring
  publication-title: Measurement (Mahwah NJ)
– volume: 416
  start-page: 47
  year: 2020
  end-page: 58
  article-title: Charging stations expansion planning under government policy driven based on Bayesian regularization backpropagation learning
  publication-title: Neurocomputing
– volume: 95
  start-page: 223
  year: 2016
  end-page: 232
  article-title: Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine
  publication-title: Energy
– volume: 10
  start-page: 5199
  year: 2020
  article-title: A method for monitoring lubrication conditions of journal bearings in a diesel engine based on contact potential
  publication-title: Appl Sci
– volume: 143
  start-page: 48
  year: 2019
  end-page: 58
  article-title: Fault detection of injectors in diesel engines using vibration time–frequency analysis
  publication-title: Appl Acoust
– volume: 37
  start-page: 199
  year: 2004
  end-page: 204
  article-title: A fuzzy diagnosis module for oil analysis in industrial diesel engines
  publication-title: IFAC Proc Vol
– volume: 45
  start-page: 270
  year: 2021
  end-page: 275
  article-title: Research on fault identification method of diesel engine based on PCA-PNN
  publication-title: J Wuhan Univ Technol Transp Sci Eng
– start-page: 73
  year: 2020
  ident: bibr16-00368504231212765
  publication-title: Marine Technology
– ident: bibr22-00368504231212765
  doi: 10.1016/j.energy.2015.12.020
– ident: bibr18-00368504231212765
  doi: 10.1016/j.protcy.2013.12.157
– ident: bibr17-00368504231212765
  doi: 10.1016/j.neucom.2019.03.092
– ident: bibr20-00368504231212765
  doi: 10.1016/j.applthermaleng.2018.08.096
– ident: bibr21-00368504231212765
  doi: 10.1016/j.aej.2015.06.007
– ident: bibr9-00368504231212765
  doi: 10.1016/S1474-6670(17)37796-0
– ident: bibr8-00368504231212765
  doi: 10.1016/j.ymssp.2009.06.012
– ident: bibr11-00368504231212765
  doi: 10.1016/j.apor.2021.102681
– volume: 8
  start-page: 100250
  year: 2020
  ident: bibr27-00368504231212765
  publication-title: Transp Res Interdiscip Perspect
– volume: 45
  start-page: 270
  year: 2021
  ident: bibr10-00368504231212765
  publication-title: J Wuhan Univ Technol Transp Sci Eng
– ident: bibr4-00368504231212765
  doi: 10.1016/S1474-6670(17)30874-1
– ident: bibr28-00368504231212765
  doi: 10.1016/j.measurement.2020.108019
– ident: bibr3-00368504231212765
  doi: 10.3390/jmse8121004
– ident: bibr14-00368504231212765
  doi: 10.1016/j.measurement.2018.04.062
– ident: bibr26-00368504231212765
  doi: 10.1016/j.procs.2018.04.241
– ident: bibr6-00368504231212765
  doi: 10.1016/j.apacoust.2018.09.002
– volume: 36
  start-page: 48
  year: 2014
  ident: bibr12-00368504231212765
  publication-title: Ship Eng
– ident: bibr5-00368504231212765
  doi: 10.1016/j.ymssp.2014.11.007
– ident: bibr7-00368504231212765
  doi: 10.1016/j.dsp.2021.103054
– ident: bibr13-00368504231212765
  doi: 10.1016/j.knosys.2019.105324
– ident: bibr19-00368504231212765
  doi: 10.1016/j.applthermaleng.2020.116343
– ident: bibr1-00368504231212765
  doi: 10.3390/app10155199
– ident: bibr24-00368504231212765
  doi: 10.1016/j.enconman.2009.11.006
– ident: bibr25-00368504231212765
  doi: 10.1115/1.4043138
– start-page: 1
  year: 2020
  ident: bibr2-00368504231212765
  publication-title: Shock Vib
– ident: bibr15-00368504231212765
  doi: 10.1016/j.ifacol.2016.08.083
– ident: bibr23-00368504231212765
  doi: 10.1016/j.enconman.2016.05.059
SSID ssj0015168
Score 2.3482158
Snippet Fault diagnosis technologies for ocean-going marine diesel engines play an important role in the safety and reliability of ship navigation. Although many fault...
SourceID pubmedcentral
proquest
crossref
sage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 368504231212765
SubjectTerms Accuracy
Algorithms
Back propagation
Back propagation networks
Bayesian analysis
Diagnostic systems
Diesel
Diesel engines
Engineering & Technology
Engines
Fault diagnosis
Faults
Internal combustion engines
Marine engines
Marine technology
Neural networks
Parametric analysis
Regularization
Title Multiple faults diagnosis for ocean-going marine diesel engines based on different neural network algorithms
URI https://journals.sagepub.com/doi/full/10.1177/00368504231212765
https://www.proquest.com/docview/2920430294
https://www.proquest.com/docview/2889246279
https://pubmed.ncbi.nlm.nih.gov/PMC10638888
Volume 106
WOSCitedRecordID wos001099790300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2047-7163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015168
  issn: 0036-8504
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CwcuiOUhCsvKSIhXFCkPJ7GPCO3CoSwcuqJwiZzE3kYqSbeP1f4Sfi8zjpO0XUDLgR6iNJnUVufL2DMef0PICy8QXqQT5SZCxy4r4tDN8KsKCwlDQhYqoU2xieT0lE8m4stg8LPdC3M5S6qKX12J-X9VNVwDZePW2X9Qd_ejcAHOQelwBLXD8UaK_9SmCGoJZ0uMrmIyXWmIFxwYrmTlntcYIfghceufg3mEauYow0y4dHBcK3ANoa2dsnKQ9BJUWTUp446cndeLcjW1ROd2attaCZPxhfYTKaAEOu1drOH7dG3i8Ov6oh0xDaJszHpUdkj9ZouElXKueskPTe3sr3b7mg1WBH3am7VpARJDgIvW2DT1m2utUfbiDfSxDROLjPmYzOMjN31TZ-L6MGAWopFr55rsNuX26ef05Gw0SsfHk_HL-YWL1chw1d6WZtkjt4IkErx11e3qVOSbLZZdx-1quSHy2m1ze77TOzG7KbgbeYRmajO-R-5an4S-a7B0QAaquk8OrD6X9LWlJn_zgMxacNEGXLQDFwVw0Q1w0QZctAEXteCiBly0rmgHLtqAi1pw0R5cD8nZyfH4_UfX1utwc8bYyo2ysPByj_kafOhEwcQ-ZJ4SmWZZpjIWZ1LJOI89yVQQJzlMnTLOogJmRJwzob3wEdmv6ko9JlRwP9RKBRkDERVoFFQyKqQOQ-17fEi89l9Nc0tmjzVVZqnf8tfvKmJI3naPzBsml78JH7aqSu27vUyxsBsLwbqxIXne3QZzjGtsslL1GmQ4FwGLg0QMCd9ScdcoErpv36nKqSF299F_gM-QvEI09C3_sZ9PbtCRp-RO_yoekv3VYq2ekdv55apcLo7IXjLhRwbfvwAZtMnG
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+faults+diagnosis+for+ocean-going+marine+diesel+engines+based+on+different+neural+network+algorithms&rft.jtitle=Science+progress+%281916%29&rft.au=Zhu%2C+Guoqing&rft.au=Huang%2C+Lin&rft.au=Yin%2C+Jiapeng&rft.au=Gai%2C+Wen&rft.date=2023-10-01&rft.issn=2047-7163&rft.eissn=2047-7163&rft.volume=106&rft.issue=4&rft.spage=368504231212765&rft_id=info:doi/10.1177%2F00368504231212765&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8504&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8504&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8504&client=summon