High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs

High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nucleic acids research Ročník 45; číslo 12; s. e116
Hlavní autoři: Panda, Amaresh C., De, Supriyo, Grammatikakis, Ioannis, Munk, Rachel, Yang, Xiaoling, Piao, Yulan, Dudekula, Dawood B., Abdelmohsen, Kotb, Gorospe, Myriam
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 07.07.2017
Témata:
ISSN:0305-1048, 1362-4962, 1362-4962
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gkx297