Tensor denoising of multidimensional MRI data
Purpose To develop a denoising strategy leveraging redundancy in high‐dimensional data. Theory and Methods The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 89; no. 3; pp. 1160 - 1172 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.03.2023
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
To develop a denoising strategy leveraging redundancy in high‐dimensional data.
Theory and Methods
The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko‐Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor‐structure to better characterize noise, and to recursively estimate signal components.
Results
Relative to matrix‐based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi‐TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.
Conclusions
The MPPCA denoising technique can be extended to high‐dimensional data with improved performance for smaller patch sizes. |
|---|---|
| AbstractList | Click here
for author‐reader discussions PurposeTo develop a denoising strategy leveraging redundancy in high‐dimensional data.Theory and MethodsThe SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko‐Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor‐structure to better characterize noise, and to recursively estimate signal components.ResultsRelative to matrix‐based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi‐TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.ConclusionsThe MPPCA denoising technique can be extended to high‐dimensional data with improved performance for smaller patch sizes. To develop a denoising strategy leveraging redundancy in high-dimensional data. The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components. Relative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases. The MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes. Purpose To develop a denoising strategy leveraging redundancy in high‐dimensional data. Theory and Methods The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko‐Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor‐structure to better characterize noise, and to recursively estimate signal components. Results Relative to matrix‐based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi‐TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases. Conclusions The MPPCA denoising technique can be extended to high‐dimensional data with improved performance for smaller patch sizes. To develop a denoising strategy leveraging redundancy in high-dimensional data.PURPOSETo develop a denoising strategy leveraging redundancy in high-dimensional data.The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components.THEORY AND METHODSThe SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components.Relative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.RESULTSRelative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.The MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes.CONCLUSIONSThe MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes. |
| Author | Østergaard, Leif Jespersen, Sune N. Olesen, Jonas L. Shemesh, Noam Ianus, Andrada |
| AuthorAffiliation | 3 Champalimaud Research Champalimaud Foundation Lisbon Portugal 1 Center of Functionally Integrative Neuroscience, Department of Clinical Medicine Aarhus University Aarhus Denmark 2 Department of Physics and Astronomy Aarhus University Aarhus Denmark |
| AuthorAffiliation_xml | – name: 1 Center of Functionally Integrative Neuroscience, Department of Clinical Medicine Aarhus University Aarhus Denmark – name: 3 Champalimaud Research Champalimaud Foundation Lisbon Portugal – name: 2 Department of Physics and Astronomy Aarhus University Aarhus Denmark |
| Author_xml | – sequence: 1 givenname: Jonas L. orcidid: 0000-0003-4624-9816 surname: Olesen fullname: Olesen, Jonas L. organization: Aarhus University – sequence: 2 givenname: Andrada orcidid: 0000-0001-9893-1724 surname: Ianus fullname: Ianus, Andrada organization: Champalimaud Foundation – sequence: 3 givenname: Leif orcidid: 0000-0003-2930-6997 surname: Østergaard fullname: Østergaard, Leif organization: Aarhus University – sequence: 4 givenname: Noam orcidid: 0000-0001-6681-5876 surname: Shemesh fullname: Shemesh, Noam organization: Champalimaud Foundation – sequence: 5 givenname: Sune N. orcidid: 0000-0003-3146-4329 surname: Jespersen fullname: Jespersen, Sune N. email: sune@cfin.au.dk organization: Aarhus University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36219475$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1KxDAUhYMoOjO68AWk4EYX1fQ2aZqVyOAfOAgyrkOaphppE01aZd7e6IyioqvAvd85nJw7RuvWWY3QboaPMozhuPPdEXDCyjU0yihACpSTdTTCjOA0zzjZQuMQHjHGnDOyibbyAuKU0RFK59oG55NaW2eCsfeJa5JuaHtTmy6ujLOyTWa3V0kte7mNNhrZBr2zeifo7vxsPr1Mr28urqan16kihJQpqzKpVIOhqEBjTjOqCS7KmueYKh7nVVXJpiG4BiVxIRlXuQJZSlBZ0zCaT9DJ0vdpqDpdK217L1vx5E0n_UI4acTPjTUP4t69iFgHB5yz6HCwcvDuedChF50JSrettNoNQQCDvMwAyiKi-7_QRzf4-O13ikaIUYIjtfc90leWzyojcLwElHcheN0IZXrZxwJjQtPGaO_pQMRjiY9jRcXhL8Wn6V_syv3VtHrxPyhmt7Ol4g09ZKLf |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106452 crossref_primary_10_1038_s41598_024_75007_x crossref_primary_10_1002_mrm_30365 crossref_primary_10_1002_nbm_5288 crossref_primary_10_1002_nbm_5264 crossref_primary_10_1002_nbm_70125 crossref_primary_10_1162_imag_a_00060 crossref_primary_10_1002_nbm_5107 crossref_primary_10_1162_imag_a_00049 crossref_primary_10_1162_imag_a_00544 crossref_primary_10_1097_RLI_0000000000000979 crossref_primary_10_7554_eLife_100570 crossref_primary_10_1007_s10334_024_01190_7 crossref_primary_10_1002_mrm_29817 crossref_primary_10_1038_s41598_023_49023_2 crossref_primary_10_1002_mrm_30050 crossref_primary_10_1002_mrm_30197 crossref_primary_10_1109_TMI_2025_3552611 crossref_primary_10_7554_eLife_100570_3 crossref_primary_10_1002_hbm_26697 crossref_primary_10_3389_fnins_2024_1499762 crossref_primary_10_1002_mrm_29763 crossref_primary_10_1002_mrm_30312 crossref_primary_10_1002_nbm_70139 crossref_primary_10_1016_j_dsp_2024_104472 crossref_primary_10_1111_jon_70029 crossref_primary_10_1002_ima_70106 crossref_primary_10_1162_imag_a_00193 crossref_primary_10_1002_mrm_29985 crossref_primary_10_1002_hbm_70142 |
| Cites_doi | 10.1002/mrm.28395 10.1016/j.media.2014.08.004 10.1038/s41598-019-38981-1 10.1016/j.neuroimage.2015.08.075 10.1016/j.neuroimage.2022.119135 10.1097/RMR.0b013e31821e56ac 10.1002/mrm.25901 10.1002/mrm.22595 10.1016/j.neuroimage.2020.116793 10.1002/mrm.27658 10.1109/ACCESS.2017.2780985 10.1371/journal.pone.0073021 10.1002/mrm.22258 10.3389/fonc.2020.01640 10.1109/TMI.2007.906087 10.1002/mrm.26059 10.1103/PhysRevE.60.3389 10.1016/j.media.2010.03.001 10.1002/nbm.1396 10.1148/radiol.2020200822 10.1002/mrm.28328 10.1016/j.media.2011.04.003 10.1016/j.neuroimage.2019.06.039 10.1007/s11263-009-0272-7 10.1002/mrm.1910340618 10.1070/SM1967v001n04ABEH001994 10.1002/mrm.28216 10.1002/nbm.3998 10.1016/j.neuroimage.2016.08.016 10.1002/mrm.1910390317 10.1016/j.neuroimage.2017.04.017 10.1016/j.neuroimage.2020.116852 10.1002/mrm.28887 10.1016/j.neuroimage.2022.119033 10.1109/TIT.2017.2653801 10.1002/mrm.23198 10.1016/j.neuroimage.2017.09.030 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.29478 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | Olesen et al |
| EISSN | 1522-2594 |
| EndPage | 1172 |
| ExternalDocumentID | PMC10092037 36219475 10_1002_mrm_29478 MRM29478 |
| Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: H2020 European Research Council funderid: 100010434; agreement 679058 – fundername: European Regional Development Fund funderid: LISBOA‐01‐0145‐FEDER‐02217 – fundername: Danish National Research Foundation funderid: CFIN – fundername: Lisboa Regional Operational Programme funderid: LISBOA‐01‐0145‐FEDER‐02217 – fundername: Danish Ministry of Science, Innovation, and Education funderid: MINDLab – fundername: “la Caixa” Foundation funderid: 100010434 – fundername: Fundação para a Ciência e Tecnologia – fundername: Velux Fonden funderid: ARCADIA; grant 00015963 – fundername: NIBIB NIH HHS grantid: R01 EB019980 – fundername: ; grantid: CFIN – fundername: Danish Ministry of Science, Innovation, and Education grantid: MINDLab – fundername: ; grantid: ARCADIA; grant 00015963 – fundername: ; grantid: LISBOA‐01‐0145‐FEDER‐02217 – fundername: ; grantid: 100010434; agreement 679058 – fundername: Lisboa Regional Operational Programme grantid: LISBOA‐01‐0145‐FEDER‐02217 – fundername: ; grantid: 100010434 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4448-7b1accf026b2e09515e4068d9305c9f02bbbaff40d2ca06a79c3c2a8a2c1ff753 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865809300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 02:06:49 EST 2025 Sun Nov 09 11:53:13 EST 2025 Sat Nov 29 14:42:05 EST 2025 Thu Apr 03 07:06:53 EDT 2025 Sat Nov 29 06:34:36 EST 2025 Tue Nov 18 22:30:52 EST 2025 Sun Jul 06 04:45:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | denoising random matrix theory diffusion principal component analysis |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4448-7b1accf026b2e09515e4068d9305c9f02bbbaff40d2ca06a79c3c2a8a2c1ff753 |
| Notes | Funding information “la Caixa” Foundation, Grant/Award Number: 100010434; Danish Ministry of Science, Innovation, and Education, Grant/Award Number: MINDLab; Danish National Research Foundation, Grant/Award Number: CFIN; European Regional Development Fund, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Fundação para a Ciência e Tecnologia, H2020 European Research Council, Grant/Award Numbers: 100010434; agreement 679058; Lisboa Regional Operational Programme, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Velux Fonden, Grant/Award Numbers: ARCADIA; grant 00015963 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information “la Caixa” Foundation, Grant/Award Number: 100010434; Danish Ministry of Science, Innovation, and Education, Grant/Award Number: MINDLab; Danish National Research Foundation, Grant/Award Number: CFIN; European Regional Development Fund, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Fundação para a Ciência e Tecnologia, H2020 European Research Council, Grant/Award Numbers: 100010434; agreement 679058; Lisboa Regional Operational Programme, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Velux Fonden, Grant/Award Numbers: ARCADIA; grant 00015963 |
| ORCID | 0000-0001-6681-5876 0000-0003-2930-6997 0000-0003-3146-4329 0000-0003-4624-9816 0000-0001-9893-1724 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29478 |
| PMID | 36219475 |
| PQID | 2758127540 |
| PQPubID | 1016391 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092037 proquest_miscellaneous_2723812286 proquest_journals_2758127540 pubmed_primary_36219475 crossref_citationtrail_10_1002_mrm_29478 crossref_primary_10_1002_mrm_29478 wiley_primary_10_1002_mrm_29478_MRM29478 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2022; 254 2009; 22 2022; 253 2019; 9 2017; 63 2018; 182 2021; 86 2015; 19 2010; 14 2009; 86 2011 2010 2020; 84 2019; 32 1995; 34 2016; 124 2016; 76 2016; 75 2012; 16 2020; 10 1999; 60 2013; 8 2017; 156 2016; 142 2010; 63 2019; 200 2018; 6 2010; 21 1998; 39 2019; 81 2016; 9902 1967; 1 2008; 27 2020; 215 2019; 27 2020; 217 2011; 65 2020; 298 2012; 68 2021; 85 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Lemberskiy G (e_1_2_9_21_1) 2019; 27 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 Foi A (e_1_2_9_42_1) 2011 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Chen G (e_1_2_9_9_1) 2016; 9902 Jones DK (e_1_2_9_2_1) 2010 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 81 start-page: 3503 year: 2019 end-page: 3514 article-title: Evaluation of principal component analysis image denoising on multi‐exponential MRI relaxometry publication-title: Magn Reson Med – volume: 86 start-page: 1 year: 2009 end-page: 32 article-title: From local kernel to nonlocal multiple‐model image denoising publication-title: Int J Comput Vis – volume: 27 start-page: 425 year: 2008 end-page: 441 article-title: An optimized blockwise nonlocal means denoising filter for 3‐D magnetic resonance images publication-title: IEEE Trans Med Imaging – volume: 200 start-page: 391 year: 2019 end-page: 404 article-title: Complex diffusion‐weighted image estimation via matrix recovery under general noise models publication-title: Neuroimage – volume: 85 start-page: 413 year: 2021 end-page: 428 article-title: Training a neural network for Gibbs and noise removal in diffusion MRI publication-title: Magn Reson Med – volume: 27 start-page: 0770 year: 2019 article-title: Achieving sub‐mm clinical diffusion MRI resolution by removing noise during reconstruction using random matrix theory publication-title: In: Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Canada – volume: 10 start-page: 1640 year: 2020 article-title: A modified higher‐order singular value decomposition framework with adaptive multilinear tensor rank approximation for three‐dimensional magnetic resonance Rician noise removal publication-title: Front Oncol – volume: 9 start-page: 1 year: 2019 end-page: 14 article-title: Dynamic imaging of glucose and lactate metabolism by 13 C‐MRS without hyperpolarization publication-title: Sci Rep – volume: 124 start-page: 1108 year: 2016 end-page: 1114 article-title: MGH–USC human connectome project datasets with ultra‐high b‐value diffusion MRI publication-title: Neuroimage – volume: 142 start-page: 394 year: 2016 end-page: 406 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage – volume: 75 start-page: 82 year: 2016 end-page: 87 article-title: Conventions and nomenclature for double diffusion encoding NMR and MRI publication-title: Magn Reson Med – volume: 19 start-page: 75 year: 2015 end-page: 86 article-title: Denoising of 3D magnetic resonance images by using higher‐order singular value decomposition publication-title: Med Image Anal – volume: 63 start-page: 2137 year: 2017 end-page: 2152 article-title: Optimal shrinkage of singular values publication-title: IEEE Trans Inf Theory. – volume: 39 start-page: 462 year: 1998 end-page: 473 article-title: Ultimate intrinsic signal‐to‐noise ratio in MRI publication-title: Magn Reson Med – start-page: 1809 year: 2011 end-page: 1814 article-title: Noise estimation and removal in MR imaging: the variance‐stabilization approach publication-title: In: Proceedings of the International Symposium on Biomedical Imaging, Chicago, Illinois, USA – volume: 22 start-page: 834 year: 2009 end-page: 842 article-title: Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe publication-title: NMR Biomed – volume: 86 start-page: 2497 year: 2021 end-page: 2511 article-title: Denoising of hyperpolarized 13C MR images of the human brain using patch‐based higher‐order singular value decomposition publication-title: Magn Reson Med – volume: 217 year: 2020 article-title: Strong diffusion gradients allow the separation of intra‐ and extra‐axonal gradient‐echo signals in the human brain publication-title: Neuroimage – volume: 16 start-page: 18 year: 2012 end-page: 27 article-title: New methods for MRI denoising based on sparseness and self‐similarity publication-title: Med Image Anal – volume: 84 start-page: 1605 year: 2020 end-page: 1623 article-title: Towards unconstrained compartment modeling in white matter using diffusion‐relaxation MRI with tensor‐valued diffusion encoding publication-title: Magn Reson Med – volume: 21 start-page: 87 year: 2010 end-page: 99 article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging publication-title: Top Magn Reson Imaging – volume: 298 start-page: 365 year: 2020 end-page: 373 article-title: Improved task‐based functional MRI language mapping in patients with brain tumors through marchenko‐pastur principal component analysis denoising publication-title: Radiology – volume: 156 start-page: 128 year: 2017 end-page: 145 article-title: Denoise diffusion‐weighted images using higher‐order singular value decomposition publication-title: Neuroimage – year: 2010 – volume: 34 start-page: 910 year: 1995 end-page: 914 article-title: The rician distribution of noisy mri data publication-title: Magn Reson Med – volume: 9902 start-page: 587 year: 2016 end-page: 595 article-title: XQ‐NLM: denoising diffusion MRI data via x‐q space non‐local patch matching publication-title: Med Image Comput Comput Assist Interv – volume: 182 start-page: 360 year: 2018 end-page: 369 article-title: TE dependent diffusion imaging (TEdDI) distinguishes between compartmental T2 relaxation times publication-title: Neuroimage – volume: 63 start-page: 782 year: 2010 end-page: 789 article-title: A method to assess spatially variant noise in dynamic MR image series publication-title: Magn Reson Med – volume: 253 year: 2022 article-title: SDnDTI: self‐supervised deep learning‐based denoising for diffusion tensor MRI publication-title: Neuroimage – volume: 84 start-page: 3351 year: 2020 end-page: 3365 article-title: Tensor image enhancement and optimal multichannel receiver combination analyses for human hyperpolarized 13C MRSI publication-title: Magn Reson Med – volume: 8 year: 2013 article-title: Diffusion weighted image denoising using overcomplete local PCA publication-title: PLoS One – volume: 1 start-page: 457 year: 1967 end-page: 483 article-title: Distribution of eigenvalues for some sets of random matrices publication-title: Math USSR‐Sbornik – volume: 14 start-page: 483 year: 2010 end-page: 493 article-title: Robust Rician noise estimation for MR images publication-title: Med Image Anal – volume: 60 start-page: 3389 year: 1999 end-page: 3392 article-title: Distributions of singular values for some random matrices publication-title: Phys Rev E – volume: 76 start-page: 1582 year: 2016 end-page: 1593 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn Reson Med – volume: 68 start-page: 286 year: 2012 end-page: 304 article-title: Ideal current patterns yielding optimal signal‐to‐noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights publication-title: Magn Reson Med – volume: 215 year: 2020 article-title: Denoise magnitude diffusion magnetic resonance images via variance‐stabilizing transformation and optimal singular‐value manipulation publication-title: Neuroimage – volume: 254 start-page: 119135 year: 2022 article-title: Soma and Neurite density MRI (SANDI) of the in‐vivo mouse brain and comparison with the Allen Brain Atlas publication-title: NeuroImage – volume: 32 year: 2019 article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation publication-title: NMR Biomed – volume: 6 start-page: 6303 year: 2018 end-page: 6315 article-title: Detail‐preserving image denoising via adaptive clustering and progressive PCA thresholding publication-title: IEEE Access – volume: 65 start-page: 480 year: 2011 end-page: 491 article-title: Second order total generalized variation (TGV) for MRI publication-title: Magn Reson Med – volume: 27 start-page: 0770 year: 2019 ident: e_1_2_9_21_1 article-title: Achieving sub‐mm clinical diffusion MRI resolution by removing noise during reconstruction using random matrix theory publication-title: In: Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Canada – volume: 9902 start-page: 587 year: 2016 ident: e_1_2_9_9_1 article-title: XQ‐NLM: denoising diffusion MRI data via x‐q space non‐local patch matching publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_9_13_1 doi: 10.1002/mrm.28395 – ident: e_1_2_9_33_1 doi: 10.1016/j.media.2014.08.004 – ident: e_1_2_9_31_1 doi: 10.1038/s41598-019-38981-1 – ident: e_1_2_9_6_1 doi: 10.1016/j.neuroimage.2015.08.075 – ident: e_1_2_9_27_1 doi: 10.1016/j.neuroimage.2022.119135 – ident: e_1_2_9_4_1 doi: 10.1097/RMR.0b013e31821e56ac – ident: e_1_2_9_39_1 doi: 10.1002/mrm.25901 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.22595 – ident: e_1_2_9_38_1 doi: 10.1016/j.neuroimage.2020.116793 – ident: e_1_2_9_23_1 doi: 10.1002/mrm.27658 – ident: e_1_2_9_24_1 doi: 10.1109/ACCESS.2017.2780985 – ident: e_1_2_9_15_1 doi: 10.1371/journal.pone.0073021 – ident: e_1_2_9_19_1 doi: 10.1002/mrm.22258 – ident: e_1_2_9_29_1 doi: 10.3389/fonc.2020.01640 – ident: e_1_2_9_10_1 doi: 10.1109/TMI.2007.906087 – ident: e_1_2_9_17_1 doi: 10.1002/mrm.26059 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevE.60.3389 – ident: e_1_2_9_41_1 doi: 10.1016/j.media.2010.03.001 – ident: e_1_2_9_8_1 doi: 10.1002/nbm.1396 – ident: e_1_2_9_26_1 doi: 10.1148/radiol.2020200822 – ident: e_1_2_9_30_1 doi: 10.1002/mrm.28328 – ident: e_1_2_9_11_1 doi: 10.1016/j.media.2011.04.003 – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2019.06.039 – ident: e_1_2_9_35_1 doi: 10.1007/s11263-009-0272-7 – ident: e_1_2_9_40_1 doi: 10.1002/mrm.1910340618 – ident: e_1_2_9_18_1 doi: 10.1070/SM1967v001n04ABEH001994 – ident: e_1_2_9_37_1 doi: 10.1002/mrm.28216 – ident: e_1_2_9_3_1 doi: 10.1002/nbm.3998 – volume-title: Diffusion MRI Theory, Methods, and Applications year: 2010 ident: e_1_2_9_2_1 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroimage.2016.08.016 – ident: e_1_2_9_7_1 doi: 10.1002/mrm.1910390317 – ident: e_1_2_9_32_1 doi: 10.1016/j.neuroimage.2017.04.017 – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroimage.2020.116852 – ident: e_1_2_9_28_1 doi: 10.1002/mrm.28887 – start-page: 1809 year: 2011 ident: e_1_2_9_42_1 article-title: Noise estimation and removal in MR imaging: the variance‐stabilization approach publication-title: In: Proceedings of the International Symposium on Biomedical Imaging, Chicago, Illinois, USA – ident: e_1_2_9_14_1 doi: 10.1016/j.neuroimage.2022.119033 – ident: e_1_2_9_34_1 doi: 10.1109/TIT.2017.2653801 – ident: e_1_2_9_5_1 doi: 10.1002/mrm.23198 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuroimage.2017.09.030 |
| SSID | ssj0009974 |
| Score | 2.578521 |
| Snippet | Purpose
To develop a denoising strategy leveraging redundancy in high‐dimensional data.
Theory and Methods
The SNR fundamentally limits the information... Click here for author‐reader discussions To develop a denoising strategy leveraging redundancy in high-dimensional data. The SNR fundamentally limits the information accessible by MRI. This limitation... PurposeTo develop a denoising strategy leveraging redundancy in high‐dimensional data.Theory and MethodsThe SNR fundamentally limits the information accessible... To develop a denoising strategy leveraging redundancy in high-dimensional data.PURPOSETo develop a denoising strategy leveraging redundancy in high-dimensional... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1160 |
| SubjectTerms | Algorithms Blurring Brain - diagnostic imaging denoising diffusion Diffusion Magnetic Resonance Imaging - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Multidimensional data Noise reduction Patches (structures) Phantoms, Imaging Principal Component Analysis Principal components analysis random matrix theory Redundancy Signal-To-Noise Ratio s—Computer Processing and Modeling Tensors |
| Title | Tensor denoising of multidimensional MRI data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29478 https://www.ncbi.nlm.nih.gov/pubmed/36219475 https://www.proquest.com/docview/2758127540 https://www.proquest.com/docview/2723812286 https://pubmed.ncbi.nlm.nih.gov/PMC10092037 |
| Volume | 89 |
| WOSCitedRecordID | wos000865809300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLf4GGgvG-NjdGOom3jgpdCmaZNqT9O2E0jcCZ1Au7cqcVLtpNFOd8DfPyftFU4MadJeqrZx1TS2YztxfwY4SlgupTUYZRkzEUesImWsiRTTkhe5URlyX2xCjEZyMikuV-Dz4l-YFh-iX3BzmuHna6fgSs9PH0BDb2Y3J6zgQq7CepKkwok045cPiLtFC8EsuJtoCr6AFYrZaf_osjF64mE-TZR87MB6CzR4_V9934JXneMZfmkl5Q2s2HobNofd1vo2bPhcUJzvQHRFoW0zC2lGaqZuKSFsqtAnHhpXCqCF8QiH4_PQpZfuwvXg-9XXs6irqhAhp1gsEjpRxBKKvTSzzsHKLBl1aQrSfCzovtZaVRWPDUMV50oUmCJTUjFMqoqimz1Yq5va7kOYx7JSwmJK0ya3MaoUtUFGTk2qK21NAMeL4S2xgxx3lS9-lS1YMitpIEo_EAF86kl_tzgbfyM6WPCo7FRtXjKKeBxKPY8D-Ng3k5K4nQ9V2-bO0TjPhDGZB_C2ZWn_FrLgJB0iC0AuMbsncADcyy319KcH4k4cYlWcCvpOz-3ne14Ox0N_8u7fSd_DS1fbvk14O4C129md_QAv8P52Op8demGno5jIQ1j_Nh5cX9DVj_PRH3vIBqk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SzaO9NI-mrds8nNJDL268smzL0EtpsiRkvYRlA7kZaSTThcYuu0l_f0ey1-mSFgK5GWuMZc1bGn8D8KnPEiGMxiCOmQ44YhlIbXQgmRI8S7SMkbtmE-loJG5usqsV-Lr4F6bBh-g23KxmOHttFdxuSJ88oIbezm6_sIynYhXWOIlR3IO10_HgevgAups1KMwpt7Ym4wtkoZCddA8v-6NHQebjWsm_Y1jnhAZbz5v-Nrxqg0__WyMtO7Biql3YzNvj9V3YcPWgOH8NwYTS23rmk1Wqp3Y7wa9L3xUfatsOoIHy8PPxhW9LTPfgenA2-X4etJ0VAuSUjwWp6ktiC-VfihkbZMWGHLvQGWk_ZnRfKSXLkoeaoQwTmWYYIZNCMuyXJWU4b6BX1ZV5B34SilKmBiMyndyEKCNUGhkFNpEqldEefF6sb4Et7LjtfvGzaACTWUELUbiF8OBjR_qrwdr4F9H-gklFq27zglHWY5HqeejBcTdMimJPP2Rl6ntLY6MTxkTiwduGp91byIuTeKSxB2KJ2x2BBeFeHqmmPxwYd9-iVoVRSt_p2P3_mRf5OHcX759OegQvzif5sBhejC4_wEvb674pgNuH3t3s3hzAOv6-m85nh63s_wE7AQiP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8x2BAvsLEBATayaQ97yUgdJ3EkXhBQDbFWFWISb5F9tkUlSFAL_P2cnTSsYkhIe4vii-Lc-b7sy-8AvvdYJoTRGKUp0xFHtJHURkeSKcGLTMsUuW82kQ-H4vKyGC3AwexfmAYfottwc5rh7bVTcHOr7f4TaujN5OYnK3gu3sAST8nGOlxnPnqC3C0aDOacO0tT8BmuUMz2u0fnvdGzEPN5peTfEax3Qf21_5v8e1htQ8_wsFkrH2DBVOuwPGgP19fhna8GxelHiC4oua0nIdmkeuw2E8Lahr70ULtmAA2QRzg4Pw1dgekn-NM_uTj6FbV9FSLklI1FuepJEgplX4oZF2Klhty60AXpPhZ0XyklreWxZijjTOYFJsikkAx71lJ-swGLVV2ZLQizWFiZG0zIcHITo0xQaWQU1iTKKqMD-DHjb4kt6LjrfXFdNnDJrCRGlJ4RAXzrSG8bpI1_Ee3OhFS2yjYtGeU8DqeexwF87YZJTdzZh6xMfe9oXGzCmMgC2Gxk2r2FfDgtjzwNQMxJuyNwENzzI9X4ykNx9xxmVZzk9J1e3C_PvBycD_zF9utJ92B5dNwvf58Oz3ZgxTW6b6rfdmHxbnJvPsNbfLgbTydf_MJ_BA22Bng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+denoising+of+multidimensional+MRI+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Olesen%2C+Jonas+L&rft.au=Ianus%2C+Andrada&rft.au=%C3%98stergaard%2C+Leif&rft.au=Shemesh%2C+Noam&rft.date=2023-03-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=89&rft.issue=3&rft.spage=1160&rft_id=info:doi/10.1002%2Fmrm.29478&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |