Current status in spatiotemporal analysis of contrast‐based perfusion MRI
In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplificat...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 91; číslo 3; s. 1136 - 1148 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.03.2024
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplification not only leads to long‐recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between‐voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state‐of‐the‐art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research. |
|---|---|
| AbstractList | In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplification not only leads to long‐recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between‐voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state‐of‐the‐art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research. In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as isolated systems supplied by a single global source. This simplification not only leads to long-recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between-voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state-of-the-art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as isolated systems supplied by a single global source. This simplification not only leads to long-recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between-voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state-of-the-art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research. |
| Author | Shalom, Eve S. Van Loo, Sven Sourbron, Steven P. Khan, Amirul |
| AuthorAffiliation | 1 School of Physics and Astronomy University of Leeds Leeds UK 4 Department of Applied Physics Ghent University Ghent Belgium 3 School of Civil Engineering University of Leeds Leeds UK 2 Division of Clinical Medicine University of Sheffield Sheffield UK |
| AuthorAffiliation_xml | – name: 1 School of Physics and Astronomy University of Leeds Leeds UK – name: 3 School of Civil Engineering University of Leeds Leeds UK – name: 4 Department of Applied Physics Ghent University Ghent Belgium – name: 2 Division of Clinical Medicine University of Sheffield Sheffield UK |
| Author_xml | – sequence: 1 givenname: Eve S. orcidid: 0000-0001-8762-3726 surname: Shalom fullname: Shalom, Eve S. email: pyess@leeds.ac.uk organization: University of Sheffield – sequence: 2 givenname: Amirul orcidid: 0000-0002-7521-5458 surname: Khan fullname: Khan, Amirul organization: University of Leeds – sequence: 3 givenname: Sven orcidid: 0000-0003-4746-8500 surname: Van Loo fullname: Van Loo, Sven organization: Ghent University – sequence: 4 givenname: Steven P. orcidid: 0000-0002-3374-3973 surname: Sourbron fullname: Sourbron, Steven P. organization: University of Sheffield |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37929645$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1O3DAUhS0EgoF2wQtUkdi0i4Dt2M54hdCoPwhGSKhdW45zQ40SO7WdVrPjEXjGPkk9DKAWqazu4n7n6Nx79tG28w4QOiT4mGBMT4YwHFMpsdhCM8IpLSmXbBvNcM1wWRHJ9tB-jLcYYylrtov2qlpSKRifoYvFFAK4VMSk0xQL64o46mR9gmH0QfeFdrpfRRsL3xXGuxR0TL_v7hsdoS1GCN0UrXfF8vr8DdrpdB_h7eM8QN8-ffy6-FJeXn0-X5xdloYxJkrRAGlxJ-qmEgyIpC02QrSmaanmFesI10xqxoHJrtWUaGFq4AYMrjjBEqoDdLrxHadmgNbAOlSvxmAHHVbKa6v-3Tj7Xd34nyqrBRUYZ4f3jw7B_5ggJjXYaKDvtQM_RUXnc8HlXNIqo0cv0Fs_hfyTTEnMcqZ5TTL17u9Iz1meHp2BDxvABB9jgO4ZIVitS1S5RPVQYmZPXrDGpnUn62ts_5ril-1h9X9rtbxebhR_ACGQr6U |
| CitedBy_id | crossref_primary_10_1007_s00330_025_11588_z crossref_primary_10_1148_ryai_240507 crossref_primary_10_1016_j_ejmp_2025_104978 crossref_primary_10_1063_5_0190561 crossref_primary_10_1186_s13195_024_01524_6 crossref_primary_10_1088_1361_6560_ad4087 crossref_primary_10_1016_j_measurement_2025_117294 |
| Cites_doi | 10.1371/journal.pbio.1001745 10.1002/mrm.1910160313 10.1002/jmri.24648 10.1002/mrm.10080 10.1109/TBME.2022.3207057 10.1126/science.220.4598.671 10.7712/100016.2101.9975 10.1002/mrm.24246 10.1097/00003086‐200104000‐00034 10.1016/j.mri.2021.10.039 10.1371/journal.pcbi.1005510 10.1016/j.pnmrs.2013.04.002 10.1088/1361‐6560/aca512 10.1109/CVPR46437.2021.00995 10.1016/j.jcp.2021.110768 10.1177/0271678X17713434 10.1109/TMI.2021.3085828 10.1371/journal.pcbi.1009481 10.1007/s10596‐016‐9595‐y 10.1002/(SICI)1522‐2586(199909)10:3<223::AID‐JMRI2>3.0.CO;2‐S 10.1667/RR1311.1 10.1016/j.cma.2020.113028 10.1371/journal.pone.0189474 10.1593/neo.81360 10.1080/10717544.2019.1588423 10.1109/TMI.2020.2975375 10.1002/mrm.21400 10.1002/jmri.21386 10.1088/1361‐6560/AC2205 10.1126/science.aaw4741 10.1002/ijc.28403 10.3390/en16052343 10.1088/0031‐9155/57/2/R1 10.1007/BF01036523 10.1007/s11547‐020‐01220‐z 10.1016/j.mri.2019.05.024 10.3109/0284186X.2010.526633 10.1088/0266‐5611/29/4/045001 10.7554/eLife.16800 10.1118/1.4898202 10.1016/j.neuroimage.2017.12.095 10.1002/mrm.10567 10.1371/journal.pone.0108726 10.1016/j.jcp.2018.10.045 10.1002/nbm.2940 10.1016/j.media.2021.102186 10.1002/nbm.2833 10.1109/TMI.2014.2300450 10.1002/mrm.22101 10.1002/mrm.29826 10.1002/nbm.3946 10.1007/s00366‐022‐01667‐w 10.1002/1522‐2594(200009)44:3<466::AID‐MRM18>3.0.CO;2‐M 10.1109/CVPR52688.2022.01823 10.1002/mrm.21806 10.1002/mrm.1910170208 10.1002/mrm.23014 10.1088/0031‐9155/58/6/1983 10.1002/mrm.27897 10.1093/neuonc/noaa141 10.1371/journal.pone.0200521 10.1002/mrm.28584 10.1002/jmri.10240 10.1038/s41597‐022‐01615‐9 10.1002/mrm.26995 10.1002/mrm.25197 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.29906 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | SHALOM et al |
| EISSN | 1522-2594 |
| EndPage | 1148 |
| ExternalDocumentID | PMC10962600 37929645 10_1002_mrm_29906 MRM29906 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: 2282622 – fundername: Engineering and Physical Sciences Research Council grantid: 2282622 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4446-6be1d0f67b364e192d0c66dcbd2a534f15a49a45e49fda21a6c7e5cec035109e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096281600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 02:05:58 EST 2025 Sun Nov 09 14:17:24 EST 2025 Sat Nov 29 14:53:04 EST 2025 Thu Apr 03 07:05:20 EDT 2025 Tue Nov 18 21:38:39 EST 2025 Sat Nov 29 08:07:23 EST 2025 Thu Sep 25 07:33:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | DCE-MRI perfusion DSC-MRI spatiotemporal modeling tracer kinetics |
| Language | English |
| License | Attribution 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4446-6be1d0f67b364e192d0c66dcbd2a534f15a49a45e49fda21a6c7e5cec035109e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-7521-5458 0000-0002-3374-3973 0000-0003-4746-8500 0000-0001-8762-3726 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29906 |
| PMID | 37929645 |
| PQID | 2904035871 |
| PQPubID | 1016391 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10962600 proquest_miscellaneous_2886598923 proquest_journals_2904035871 pubmed_primary_37929645 crossref_primary_10_1002_mrm_29906 crossref_citationtrail_10_1002_mrm_29906 wiley_primary_10_1002_mrm_29906_MRM29906 |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2001; 385 2013; 29 2013; 26 1991; 17 2013; 69 2021; 66 1990; 16 2015; 73 2000; 44 2022; 67 2018; 80 2003; 17 2020; 365 2020; 367 2020; 125 2003; 50 2021; 73 2014; 135 2009; 11 2002; 47 1986; 1 2001; 61 2013; 58 2019; 62 1983; 220 2015; 41 2008; 27 2019; 26 1999; 10 2014; 9 2012; 67 2021; 85 2008; 60 2021; 40 2018; 31 2018; 38 2022; 38 2014; 12 1990; 50 2023; 70 2009; 62 2012 2023; 16 2017; 21 2020; 39 2022; 86 2008; 169 1991 2014; 41 2007; 58 2019; 187 2015; 23 2019; 82 2023 2022 2021 2020 2021; 17 2022; 9 2017; 13 2013; 74 2011; 50 2019; 378 2016 2020; 22 2013 2014; 33 2018; 13 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Sourbron SP (e_1_2_11_54_1) 2015; 23 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_62_1 Aart E (e_1_2_11_44_1) 1991 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 Boucher Y (e_1_2_11_40_1) 1990; 50 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Milosevic M (e_1_2_11_41_1) 2001; 61 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – volume: 73 year: 2021 article-title: An in silico validation framework for quantitative DCE‐MRI techniques based on a dynamic digital phantom publication-title: Med Image Anal – volume: 12 year: 2014 article-title: Best practices for scientific computing publication-title: PLoS Biol – volume: 62 start-page: 1477 year: 2009 end-page: 1486 article-title: Model‐based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)‐MRI publication-title: Magn Reson Med – volume: 125 start-page: 1288 year: 2020 end-page: 1300 article-title: Dynamic contrast‐enhanced MRI in oncology: how we do it publication-title: Radiol Med – volume: 10 start-page: 223 year: 1999 end-page: 232 article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T1‐weighted MRI of a diffusable tracer: standardized quantities and symbols publication-title: J Magn Reson Imaging – volume: 50 start-page: 614 year: 2003 end-page: 622 article-title: Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI publication-title: Magn Reson Med – volume: 40 start-page: 3424 year: 2021 end-page: 3435 article-title: Perfusion imaging: an advection diffusion approach publication-title: IEEE Trans Med Imaging – volume: 22 start-page: 1262 year: 2020 end-page: 1275 article-title: Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high‐grade gliomas publication-title: Neuro Oncol – year: 2021 – volume: 13 year: 2018 article-title: Multiscale modelling of blood flow in cerebral microcirculation: details at capillary scale control accuracy at the level of the cortex publication-title: PloS One – volume: 50 start-page: 427 year: 2011 end-page: 434 article-title: Magnetic resonance imaging of tumor necrosis publication-title: Acta Oncol – volume: 67 year: 2022 article-title: Incorporating cross‐voxel exchange for the analysis of dynamic contrast‐enhanced imaging data: pre‐clinical results publication-title: Phys Med Biol – volume: 50 start-page: 4478 year: 1990 end-page: 4484 article-title: Interstitial pressure gradients in tissue‐isolated and subcutaneous tumors: implications for therapy publication-title: Cancer Res – volume: 16 year: 2023 article-title: A review of physics‐informed machine learning in fluid mechanics publication-title: Energies – volume: 86 start-page: 86 year: 2022 end-page: 93 article-title: Quantitative transport mapping (QTM) for differentiating benign and malignant breast lesion: comparison with traditional kinetics modeling and semi‐quantitative enhancement curve characteristics publication-title: Magn Reson Imaging – volume: 220 start-page: 671 year: 1983 end-page: 680 article-title: Optimization by simulated annealing publication-title: Science – year: 2023 article-title: Contrast‐agent‐based perfusion MRI code repository and testing framework: ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) publication-title: Magn Reson Med – volume: 17 year: 2021 article-title: Ten simple rules on writing clean and reliable open‐source scientific software publication-title: PLoS Comput Biol – volume: 74 start-page: 1 year: 2013 end-page: 32 article-title: Arterial input function in perfusion MRI: a comprehensive review publication-title: Prog Nucl Magn Reson Spectrosc – volume: 26 start-page: 404 year: 2019 end-page: 415 article-title: A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy publication-title: Drug Deliv – volume: 13 year: 2018 article-title: Estimating the discretization dependent accuracy of perfusion in coupled capillary flow measurements publication-title: PloS One – volume: 38 start-page: 3849 issue: 5 year: 2022 end-page: 3865 article-title: A finite element based optimization algorithm to include diffusion into the analysis of DCE‐MRI publication-title: Eng Comput – volume: 62 start-page: 46 year: 2019 end-page: 56 article-title: Blind deconvolution estimation of an arterial input function for small animal DCE‐MRI publication-title: Magn Reson Imaging – volume: 58 start-page: 1983 year: 2013 end-page: 1998 article-title: A diffusion‐compensated model for the analysis of DCE‐MRI data: theory, simulations, and experimental results publication-title: Phys Med Biol – volume: 58 start-page: 1124 year: 2007 end-page: 1134 article-title: Incorporating contrast agent diffusion into the analysis of DCE‐MRI data publication-title: Magn Reson Med – year: 2022 – start-page: 5:1‐19 year: 2016 article-title: How open science helps researchers succeed publication-title: Elife – volume: 80 start-page: 330 year: 2018 end-page: 340 article-title: The effects of intravoxel contrast agent diffusion on the analysis of DCE‐MRI data in realistic tissue domains publication-title: Magn Reson Med – start-page: 57:R1‐R33 year: 2012 article-title: Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability publication-title: Phys Med Biol – volume: 33 start-page: 935 year: 2014 end-page: 946 article-title: A tracer‐kinetic field theory for medical imaging publication-title: IEEE Trans Med Imaging – volume: 16 start-page: 470 year: 1990 end-page: 475 article-title: Does IVIM measure classical perfusion? publication-title: Magn Reson Med – volume: 39 start-page: 2760 year: 2020 end-page: 2771 article-title: Patient‐specific characterization of breast cancer Hemodynamics using image‐guided computational fluid dynamics publication-title: IEEE Trans Med Imaging – volume: 70 start-page: 980 year: 2023 end-page: 990 article-title: Fluid mechanics approach to perfusion quantification: vasculature computational fluid dynamics simulation, quantitative transport mapping (QTM) analysis of dynamics contrast enhanced MRI, and application in nonalcoholic fatty liver disease classification publication-title: IEEE Trans Biomed Eng – volume: 17 start-page: 241 year: 2003 end-page: 255 article-title: Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow? publication-title: J Magn Reson Imaging – volume: 47 start-page: 601 year: 2002 end-page: 606 article-title: Uncertainty in the analysis of tracer kinetics using dynamic contrast‐enhanced T1‐weighted MRI publication-title: Magn Reson Med – volume: 67 start-page: 519 year: 2012 end-page: 530 article-title: Dynamic contrast‐enhanced‐MRI of tumor hypoxia publication-title: Magn Reson Med – volume: 187 start-page: 3 year: 2019 end-page: 16 article-title: Recent progress in ASL publication-title: Neuroimage – volume: 26 start-page: 913 year: 2013 end-page: 931 article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI publication-title: NMR Biomed – volume: 41 start-page: 296 year: 2015 end-page: 313 article-title: Principles of T2*‐weighted dynamic susceptibility contrast MRI technique in brain tumor imaging publication-title: J Magn Reson Imaging – volume: 21 start-page: 75 year: 2017 end-page: 94 article-title: Joint hydrogeophysical inversion: state estimation for seawater intrusion models in 3D publication-title: Comput Geosci – volume: 60 start-page: 1284 year: 2008 end-page: 1291 article-title: Perfusion tensor imaging publication-title: Magn Reson Med – volume: 82 start-page: 2314 year: 2019 end-page: 2325 article-title: Optimal mass transport kinetic modeling for head and neck DCE‐MRI: initial analysis publication-title: Magn Reson Med – volume: 13 year: 2017 article-title: Good enough practices in scientific computing publication-title: PLoS Comput Biol – volume: 27 start-page: 1371 year: 2008 end-page: 1381 article-title: Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI publication-title: J Magn Reson Imaging – volume: 11 year: 2009 article-title: Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia publication-title: Neoplasia – volume: 378 start-page: 686 year: 2019 end-page: 707 article-title: Physics‐informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys – volume: 61 start-page: 6400 year: 2001 end-page: 6405 article-title: Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements publication-title: Cancer Res – volume: 26 start-page: 1004 year: 2013 end-page: 1027 article-title: Classic models for dynamic contrast‐enhanced MRI publication-title: NMR Biomed – year: 2016 – volume: 31 year: 2018 article-title: Impact of contrast agent injection duration on dynamic contrast‐enhanced MRI quantification in prostate cancer publication-title: NMR Biomed – volume: 17 start-page: 357 year: 1991 end-page: 367 article-title: Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts publication-title: Magn Reson Med – volume: 69 start-page: 269 year: 2013 end-page: 276 article-title: In vivo measurement of gadolinium diffusivity by dynamic contrast‐enhanced MRI: a preclinical study of human xenografts publication-title: Magn Reson Med – volume: 66 year: 2021 article-title: Incorporating cross‐voxel exchange into the analysis of dynamic contrast‐enhanced imaging data: theory, simulations and experimental results publication-title: Phys Med Biol – volume: 385 start-page: 230 year: 2001 end-page: 236 article-title: Interstitial fluid pressure and blood flow in canine osteosarcoma and other tumors publication-title: Clin Orthop Relat Res – volume: 1 start-page: 3 year: 1986 end-page: 25 article-title: Flow in porous media I: a theoretical derivation of Darcy's law publication-title: Transp Porous Media – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 23 start-page: 2324 year: 2015 article-title: Reconstructing the one‐compartment tracer‐kinetic field with diffusion and convection publication-title: Proc Intl Soc Mag Reson Med – volume: 367 start-page: 1026 year: 2020 end-page: 1030 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science – volume: 44 start-page: 466 year: 2000 end-page: 473 article-title: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition publication-title: Magn Reson Med – volume: 29 year: 2013 article-title: Ensemble Kalman methods for inverse problems publication-title: Inverse Probl – volume: 365 year: 2020 article-title: Conservative physics‐informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems publication-title: Comput Methods Appl Mech Eng – volume: 38 start-page: 1461 year: 2018 end-page: 1480 article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow publication-title: J Cereb Blood Flow Metab – volume: 41 year: 2014 article-title: Models and methods for analyzing DCE‐MRI: a review publication-title: Med Phys – year: 2023 – volume: 9 year: 2014 article-title: Modeling the effect of intra‐voxel diffusion of contrast agent on the quantitative analysis of dynamic contrast enhanced magnetic resonance imaging publication-title: PloS One – volume: 135 start-page: 1692 year: 2014 end-page: 1699 article-title: High tumor interstitial fluid pressure identifies cervical cancer patients with improved survival from radiotherapy plus cisplatin versus radiotherapy alone publication-title: Int J Cancer – year: 1991 – volume: 169 start-page: 689 year: 2008 end-page: 699 article-title: Assessment of fraction of hypoxic cells in human tumor xenografts with necrotic regions by dynamic contrast‐enhanced MRI publication-title: Radiat Res – volume: 9 start-page: 543 year: 2022 article-title: ASL‐BIDS, the brain imaging data structure extension for arterial spin labeling publication-title: Sci Data – volume: 85 start-page: 2247 year: 2021 end-page: 2262 article-title: Quantitative transport mapping (QTM) of the kidney with an approximate microvascular network publication-title: Magn Reson Med – start-page: 449:110768 year: 2020 article-title: When and why PINNs fail to train: a neural tangent kernel perspective publication-title: J Comput Phys – year: 2013 – ident: e_1_2_11_69_1 doi: 10.1371/journal.pbio.1001745 – ident: e_1_2_11_18_1 doi: 10.1002/mrm.1910160313 – ident: e_1_2_11_4_1 doi: 10.1002/jmri.24648 – ident: e_1_2_11_14_1 doi: 10.1002/mrm.10080 – ident: e_1_2_11_53_1 doi: 10.1109/TBME.2022.3207057 – ident: e_1_2_11_45_1 doi: 10.1126/science.220.4598.671 – ident: e_1_2_11_58_1 doi: 10.7712/100016.2101.9975 – ident: e_1_2_11_47_1 doi: 10.1002/mrm.24246 – ident: e_1_2_11_42_1 doi: 10.1097/00003086‐200104000‐00034 – ident: e_1_2_11_52_1 doi: 10.1016/j.mri.2021.10.039 – ident: e_1_2_11_70_1 doi: 10.1371/journal.pcbi.1005510 – ident: e_1_2_11_15_1 doi: 10.1016/j.pnmrs.2013.04.002 – volume: 50 start-page: 4478 year: 1990 ident: e_1_2_11_40_1 article-title: Interstitial pressure gradients in tissue‐isolated and subcutaneous tumors: implications for therapy publication-title: Cancer Res – ident: e_1_2_11_50_1 doi: 10.1088/1361‐6560/aca512 – ident: e_1_2_11_56_1 doi: 10.1109/CVPR46437.2021.00995 – ident: e_1_2_11_74_1 doi: 10.1016/j.jcp.2021.110768 – ident: e_1_2_11_7_1 doi: 10.1177/0271678X17713434 – volume: 23 start-page: 2324 year: 2015 ident: e_1_2_11_54_1 article-title: Reconstructing the one‐compartment tracer‐kinetic field with diffusion and convection publication-title: Proc Intl Soc Mag Reson Med – ident: e_1_2_11_55_1 doi: 10.1109/TMI.2021.3085828 – ident: e_1_2_11_71_1 doi: 10.1371/journal.pcbi.1009481 – ident: e_1_2_11_59_1 doi: 10.1007/s10596‐016‐9595‐y – ident: e_1_2_11_10_1 doi: 10.1002/(SICI)1522‐2586(199909)10:3<223::AID‐JMRI2>3.0.CO;2‐S – ident: e_1_2_11_35_1 doi: 10.1667/RR1311.1 – ident: e_1_2_11_68_1 – ident: e_1_2_11_73_1 doi: 10.1016/j.cma.2020.113028 – ident: e_1_2_11_34_1 doi: 10.1371/journal.pone.0189474 – ident: e_1_2_11_37_1 doi: 10.1593/neo.81360 – ident: e_1_2_11_31_1 doi: 10.1080/10717544.2019.1588423 – ident: e_1_2_11_32_1 doi: 10.1109/TMI.2020.2975375 – ident: e_1_2_11_28_1 doi: 10.1002/mrm.21400 – ident: e_1_2_11_23_1 doi: 10.1002/jmri.21386 – ident: e_1_2_11_49_1 doi: 10.1088/1361‐6560/AC2205 – ident: e_1_2_11_22_1 doi: 10.1126/science.aaw4741 – ident: e_1_2_11_43_1 doi: 10.1002/ijc.28403 – ident: e_1_2_11_72_1 doi: 10.3390/en16052343 – ident: e_1_2_11_11_1 doi: 10.1088/0031‐9155/57/2/R1 – ident: e_1_2_11_61_1 doi: 10.1007/BF01036523 – ident: e_1_2_11_3_1 doi: 10.1007/s11547‐020‐01220‐z – ident: e_1_2_11_26_1 doi: 10.1016/j.mri.2019.05.024 – ident: e_1_2_11_36_1 doi: 10.3109/0284186X.2010.526633 – ident: e_1_2_11_62_1 doi: 10.1088/0266‐5611/29/4/045001 – ident: e_1_2_11_63_1 doi: 10.7554/eLife.16800 – ident: e_1_2_11_2_1 doi: 10.1118/1.4898202 – ident: e_1_2_11_8_1 doi: 10.1016/j.neuroimage.2017.12.095 – ident: e_1_2_11_75_1 doi: 10.1002/mrm.10567 – ident: e_1_2_11_30_1 doi: 10.1371/journal.pone.0108726 – volume-title: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing year: 1991 ident: e_1_2_11_44_1 – ident: e_1_2_11_21_1 doi: 10.1016/j.jcp.2018.10.045 – ident: e_1_2_11_12_1 doi: 10.1002/nbm.2940 – ident: e_1_2_11_33_1 doi: 10.1016/j.media.2021.102186 – ident: e_1_2_11_16_1 doi: 10.1002/nbm.2833 – ident: e_1_2_11_20_1 doi: 10.1109/TMI.2014.2300450 – ident: e_1_2_11_25_1 doi: 10.1002/mrm.22101 – ident: e_1_2_11_65_1 doi: 10.1002/mrm.29826 – ident: e_1_2_11_76_1 doi: 10.1002/nbm.3946 – ident: e_1_2_11_60_1 doi: 10.1007/s00366‐022‐01667‐w – ident: e_1_2_11_13_1 doi: 10.1002/1522‐2594(200009)44:3<466::AID‐MRM18>3.0.CO;2‐M – ident: e_1_2_11_27_1 – ident: e_1_2_11_57_1 doi: 10.1109/CVPR52688.2022.01823 – ident: e_1_2_11_24_1 doi: 10.1002/mrm.21806 – ident: e_1_2_11_9_1 doi: 10.1002/mrm.1910170208 – ident: e_1_2_11_38_1 doi: 10.1002/mrm.23014 – ident: e_1_2_11_46_1 doi: 10.1088/0031‐9155/58/6/1983 – ident: e_1_2_11_29_1 – volume: 61 start-page: 6400 year: 2001 ident: e_1_2_11_41_1 article-title: Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements publication-title: Cancer Res – ident: e_1_2_11_48_1 doi: 10.1002/mrm.27897 – ident: e_1_2_11_5_1 doi: 10.1093/neuonc/noaa141 – ident: e_1_2_11_17_1 doi: 10.1371/journal.pone.0200521 – ident: e_1_2_11_51_1 doi: 10.1002/mrm.28584 – ident: e_1_2_11_64_1 – ident: e_1_2_11_19_1 doi: 10.1002/jmri.10240 – ident: e_1_2_11_66_1 doi: 10.1038/s41597‐022‐01615‐9 – ident: e_1_2_11_39_1 doi: 10.1002/mrm.26995 – ident: e_1_2_11_6_1 doi: 10.1002/mrm.25197 – ident: e_1_2_11_67_1 |
| SSID | ssj0009974 |
| Score | 2.492929 |
| SecondaryResourceType | review_article |
| Snippet | In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1136 |
| SubjectTerms | Computer Processing and Modeling Contrast Media DCE‐MRI DSC‐MRI Image contrast Inverse problems Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Nomenclature Perfusion Review Spatio-Temporal Analysis spatiotemporal modeling Systematic errors tracer kinetics |
| Title | Current status in spatiotemporal analysis of contrast‐based perfusion MRI |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29906 https://www.ncbi.nlm.nih.gov/pubmed/37929645 https://www.proquest.com/docview/2904035871 https://www.proquest.com/docview/2886598923 https://pubmed.ncbi.nlm.nih.gov/PMC10962600 |
| Volume | 91 |
| WOSCitedRecordID | wos001096281600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFqpeeBTaBkplEAcuoXn4KU4IuqKiu6pWVOwt8tqOulKbrTa7nPkJ_Y39JYydbMqqICH1EiXyRHHGM-MZz_gzwDvOtFUsM-i5OQxQhFOx5NLGlMmyLK3RloeNwidiMJCjkTpdg4_LvTANPkS34OY1I9hrr-B6XB_egoZezi4_eFvKH8BGmubCi3RGT28Rd1UDwSyoNzSKLmGFkuywe3V1MrrjYd4tlPzTgQ0zUO_Jvfr-FB63jif51EjKM1hz1TZs9tvU-jY8CrWgpn4O31rMJuI3Gy1qMqlIHequWxirC6JbJBMyLUmoddf1_ObXtZ8RLblys3Lh1-BIf3j8As56R98_f43bMxdiQzEyjPnYpTYpuRjnnDp0_2xiOLdmbDPNclqmTFOlKXNUlVZnqeZGOGac8RnJRLl8B9araeX2gKDzY7URzFkPqe-kNE6nDgVBGJkbmkTwfsn8wrSA5P5cjIuigVLOCmRTEdgUwduO9KpB4fgb0f5yBItWEWtsQSuVMwwLI3jTNaMK-byIrtx0gTRScqYkuroR7DYD3n0F5conplkEckUUOgIPz73aUk3OA0w3ssNHi_4_gyz8u-dFf9gPNy__n_QVbGXoXzXlcPuwPp8t3Gt4aH7OJ_XsIKgCXsVIHsDGl2Hv7ASffhwPfgPX1xKh |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDsZe-DMGZAwwiAdewtLEdmxpLwioNq2pULVJe4tc-yIqbenUtDzzEfiMfJLZjptRDSQk3iL5ojjnu_Pv7PPPAO84U0ayVFvkhjZByVHGggsTUyaqqjJaGe4PCg_z0Uicn8uvG3C4OgvT8kN0C27OM3y8dg7uFqQPblhDL-eXH1ww5Xdgk1ozYj3Y_DwenA1vSHdly8KcUxdrJF0xCyXpQffy-nx0C2TerpX8HcP6SWjw8P-6_wgeBPBJPrbW8hg2sN6BrSJsr-_APV8PqpsncBJ4m4g7cLRsyLQmja-9DlRWF0QFNhMyq4ivd1fN4tePn25WNOQK59XSrcORYny8C2eDL6efjuJw70Ksqc0OYz7Bvkkqnk8yTtFCQJNozo2emFSxjFZ9pqhUlCGVlVFpX3GdI9Oo3a5kIjF7Cr16VuNzIBYAGaVzhsbR6qMQGlUfrTHkWmSaJhG8X2m_1IGU3N2NcVG2dMppadVUejVF8LYTvWqZOP4ktL8awjI4Y2NbbKTKmE0NI3jTNVs3cnsjqsbZ0soIwZkUFu5G8Kwd8e4rWS7d5jSLQKzZQifgKLrXW-rpN0_VbdXhMkb3n94Y_t7zshgX_mHv30Vfw_2j02JYDo9HJy9gO7V4qy2P24feYr7El3BXf19Mm_mr4BnXg9AUhw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xtiFeGDA2whh40x72EkgT27ElXqZt1RC0qtAm8Ra59llUgrRq2j3vJ_Ab-SXYThpWsUmT9hbJF8U5350_-86fAT5wpoxkqXbIDd0CJUcZCy5MTJmw1hqtDA8Hhc_zfl9cXsrBCpwszsLU_BDthpv3jBCvvYPjxNjjB9bQm-nNkQ-m_Ak8pczFWM_rTAcPlLuy5mDOqY80ki54hZL0uH11eTZ6BDEfV0r-jmDDFNR98X-d34SNBnqST7WtbMEKltuw1muS69vwPFSD6uolnDWsTcQfN5pXZFSSKlReN0RW10Q1XCZkbEmodlfV7O7XrZ8TDZng1M79LhzpXZzuwI_u1--fv8XNrQuxpm5tGPMhdkxieT7MOEUHAE2iOTd6aFLFMmo7TFGpKEMqrVFpR3GdI9OofU4ykZi9gtVyXOIuEAd_jNI5Q-NJ9VEIjaqDzhRyLTJNkwg-LrRf6IaS3N-McV3UZMpp4dRUBDVF8L4VndQ8HH8S2l8MYdG4YuVaXJzKmFsYRvCubXZO5DMjqsTx3MkIwZkUDuxG8Loe8fYrWS59appFIJZsoRXwBN3LLeXoKhB1O3X49aL_z2AMf-950bvohYe9fxc9hLXBl25xfto_ewPrqQNbdW3cPqzOpnN8C8_0z9momh4Et7gHFsoScA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+in+spatiotemporal+analysis+of+contrast-based+perfusion+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Shalom%2C+Eve+S&rft.au=Khan%2C+Amirul&rft.au=Van+Loo%2C+Sven&rft.au=Sourbron%2C+Steven+P&rft.date=2024-03-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=91&rft.issue=3&rft.spage=1136&rft_id=info:doi/10.1002%2Fmrm.29906&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |