Current status in spatiotemporal analysis of contrast‐based perfusion MRI

In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplificat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 91; číslo 3; s. 1136 - 1148
Hlavní autoři: Shalom, Eve S., Khan, Amirul, Van Loo, Sven, Sourbron, Steven P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.03.2024
John Wiley and Sons Inc
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplification not only leads to long‐recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between‐voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state‐of‐the‐art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.
AbstractList In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplification not only leads to long‐recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between‐voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state‐of‐the‐art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.
In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as isolated systems supplied by a single global source. This simplification not only leads to long-recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between-voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state-of-the-art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as isolated systems supplied by a single global source. This simplification not only leads to long-recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between-voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state-of-the-art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.
Author Shalom, Eve S.
Van Loo, Sven
Sourbron, Steven P.
Khan, Amirul
AuthorAffiliation 1 School of Physics and Astronomy University of Leeds Leeds UK
4 Department of Applied Physics Ghent University Ghent Belgium
3 School of Civil Engineering University of Leeds Leeds UK
2 Division of Clinical Medicine University of Sheffield Sheffield UK
AuthorAffiliation_xml – name: 1 School of Physics and Astronomy University of Leeds Leeds UK
– name: 3 School of Civil Engineering University of Leeds Leeds UK
– name: 4 Department of Applied Physics Ghent University Ghent Belgium
– name: 2 Division of Clinical Medicine University of Sheffield Sheffield UK
Author_xml – sequence: 1
  givenname: Eve S.
  orcidid: 0000-0001-8762-3726
  surname: Shalom
  fullname: Shalom, Eve S.
  email: pyess@leeds.ac.uk
  organization: University of Sheffield
– sequence: 2
  givenname: Amirul
  orcidid: 0000-0002-7521-5458
  surname: Khan
  fullname: Khan, Amirul
  organization: University of Leeds
– sequence: 3
  givenname: Sven
  orcidid: 0000-0003-4746-8500
  surname: Van Loo
  fullname: Van Loo, Sven
  organization: Ghent University
– sequence: 4
  givenname: Steven P.
  orcidid: 0000-0002-3374-3973
  surname: Sourbron
  fullname: Sourbron, Steven P.
  organization: University of Sheffield
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37929645$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUhS0EgoF2wQtUkdi0i4Dt2M54hdCoPwhGSKhdW45zQ40SO7WdVrPjEXjGPkk9DKAWqazu4n7n6Nx79tG28w4QOiT4mGBMT4YwHFMpsdhCM8IpLSmXbBvNcM1wWRHJ9tB-jLcYYylrtov2qlpSKRifoYvFFAK4VMSk0xQL64o46mR9gmH0QfeFdrpfRRsL3xXGuxR0TL_v7hsdoS1GCN0UrXfF8vr8DdrpdB_h7eM8QN8-ffy6-FJeXn0-X5xdloYxJkrRAGlxJ-qmEgyIpC02QrSmaanmFesI10xqxoHJrtWUaGFq4AYMrjjBEqoDdLrxHadmgNbAOlSvxmAHHVbKa6v-3Tj7Xd34nyqrBRUYZ4f3jw7B_5ggJjXYaKDvtQM_RUXnc8HlXNIqo0cv0Fs_hfyTTEnMcqZ5TTL17u9Iz1meHp2BDxvABB9jgO4ZIVitS1S5RPVQYmZPXrDGpnUn62ts_5ril-1h9X9rtbxebhR_ACGQr6U
CitedBy_id crossref_primary_10_1007_s00330_025_11588_z
crossref_primary_10_1148_ryai_240507
crossref_primary_10_1016_j_ejmp_2025_104978
crossref_primary_10_1063_5_0190561
crossref_primary_10_1186_s13195_024_01524_6
crossref_primary_10_1088_1361_6560_ad4087
crossref_primary_10_1016_j_measurement_2025_117294
Cites_doi 10.1371/journal.pbio.1001745
10.1002/mrm.1910160313
10.1002/jmri.24648
10.1002/mrm.10080
10.1109/TBME.2022.3207057
10.1126/science.220.4598.671
10.7712/100016.2101.9975
10.1002/mrm.24246
10.1097/00003086‐200104000‐00034
10.1016/j.mri.2021.10.039
10.1371/journal.pcbi.1005510
10.1016/j.pnmrs.2013.04.002
10.1088/1361‐6560/aca512
10.1109/CVPR46437.2021.00995
10.1016/j.jcp.2021.110768
10.1177/0271678X17713434
10.1109/TMI.2021.3085828
10.1371/journal.pcbi.1009481
10.1007/s10596‐016‐9595‐y
10.1002/(SICI)1522‐2586(199909)10:3<223::AID‐JMRI2>3.0.CO;2‐S
10.1667/RR1311.1
10.1016/j.cma.2020.113028
10.1371/journal.pone.0189474
10.1593/neo.81360
10.1080/10717544.2019.1588423
10.1109/TMI.2020.2975375
10.1002/mrm.21400
10.1002/jmri.21386
10.1088/1361‐6560/AC2205
10.1126/science.aaw4741
10.1002/ijc.28403
10.3390/en16052343
10.1088/0031‐9155/57/2/R1
10.1007/BF01036523
10.1007/s11547‐020‐01220‐z
10.1016/j.mri.2019.05.024
10.3109/0284186X.2010.526633
10.1088/0266‐5611/29/4/045001
10.7554/eLife.16800
10.1118/1.4898202
10.1016/j.neuroimage.2017.12.095
10.1002/mrm.10567
10.1371/journal.pone.0108726
10.1016/j.jcp.2018.10.045
10.1002/nbm.2940
10.1016/j.media.2021.102186
10.1002/nbm.2833
10.1109/TMI.2014.2300450
10.1002/mrm.22101
10.1002/mrm.29826
10.1002/nbm.3946
10.1007/s00366‐022‐01667‐w
10.1002/1522‐2594(200009)44:3<466::AID‐MRM18>3.0.CO;2‐M
10.1109/CVPR52688.2022.01823
10.1002/mrm.21806
10.1002/mrm.1910170208
10.1002/mrm.23014
10.1088/0031‐9155/58/6/1983
10.1002/mrm.27897
10.1093/neuonc/noaa141
10.1371/journal.pone.0200521
10.1002/mrm.28584
10.1002/jmri.10240
10.1038/s41597‐022‐01615‐9
10.1002/mrm.26995
10.1002/mrm.25197
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29906
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Biochemistry Abstracts 1

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate SHALOM et al
EISSN 1522-2594
EndPage 1148
ExternalDocumentID PMC10962600
37929645
10_1002_mrm_29906
MRM29906
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: 2282622
– fundername: Engineering and Physical Sciences Research Council
  grantid: 2282622
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4446-6be1d0f67b364e192d0c66dcbd2a534f15a49a45e49fda21a6c7e5cec035109e3
IEDL.DBID 24P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096281600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:05:58 EST 2025
Sun Nov 09 14:17:24 EST 2025
Sat Nov 29 14:53:04 EST 2025
Thu Apr 03 07:05:20 EDT 2025
Tue Nov 18 21:38:39 EST 2025
Sat Nov 29 08:07:23 EST 2025
Thu Sep 25 07:33:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DCE-MRI
perfusion
DSC-MRI
spatiotemporal modeling
tracer kinetics
Language English
License Attribution
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4446-6be1d0f67b364e192d0c66dcbd2a534f15a49a45e49fda21a6c7e5cec035109e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7521-5458
0000-0002-3374-3973
0000-0003-4746-8500
0000-0001-8762-3726
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29906
PMID 37929645
PQID 2904035871
PQPubID 1016391
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10962600
proquest_miscellaneous_2886598923
proquest_journals_2904035871
pubmed_primary_37929645
crossref_primary_10_1002_mrm_29906
crossref_citationtrail_10_1002_mrm_29906
wiley_primary_10_1002_mrm_29906_MRM29906
PublicationCentury 2000
PublicationDate March 2024
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2001; 385
2013; 29
2013; 26
1991; 17
2013; 69
2021; 66
1990; 16
2015; 73
2000; 44
2022; 67
2018; 80
2003; 17
2020; 365
2020; 367
2020; 125
2003; 50
2021; 73
2014; 135
2009; 11
2002; 47
1986; 1
2001; 61
2013; 58
2019; 62
1983; 220
2015; 41
2008; 27
2019; 26
1999; 10
2014; 9
2012; 67
2021; 85
2008; 60
2021; 40
2018; 31
2018; 38
2022; 38
2014; 12
1990; 50
2023; 70
2009; 62
2012
2023; 16
2017; 21
2020; 39
2022; 86
2008; 169
1991
2014; 41
2007; 58
2019; 187
2015; 23
2019; 82
2023
2022
2021
2020
2021; 17
2022; 9
2017; 13
2013; 74
2011; 50
2019; 378
2016
2020; 22
2013
2014; 33
2018; 13
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Sourbron SP (e_1_2_11_54_1) 2015; 23
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_62_1
Aart E (e_1_2_11_44_1) 1991
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
Boucher Y (e_1_2_11_40_1) 1990; 50
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Milosevic M (e_1_2_11_41_1) 2001; 61
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 73
  year: 2021
  article-title: An in silico validation framework for quantitative DCE‐MRI techniques based on a dynamic digital phantom
  publication-title: Med Image Anal
– volume: 12
  year: 2014
  article-title: Best practices for scientific computing
  publication-title: PLoS Biol
– volume: 62
  start-page: 1477
  year: 2009
  end-page: 1486
  article-title: Model‐based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)‐MRI
  publication-title: Magn Reson Med
– volume: 125
  start-page: 1288
  year: 2020
  end-page: 1300
  article-title: Dynamic contrast‐enhanced MRI in oncology: how we do it
  publication-title: Radiol Med
– volume: 10
  start-page: 223
  year: 1999
  end-page: 232
  article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T1‐weighted MRI of a diffusable tracer: standardized quantities and symbols
  publication-title: J Magn Reson Imaging
– volume: 50
  start-page: 614
  year: 2003
  end-page: 622
  article-title: Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI
  publication-title: Magn Reson Med
– volume: 40
  start-page: 3424
  year: 2021
  end-page: 3435
  article-title: Perfusion imaging: an advection diffusion approach
  publication-title: IEEE Trans Med Imaging
– volume: 22
  start-page: 1262
  year: 2020
  end-page: 1275
  article-title: Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high‐grade gliomas
  publication-title: Neuro Oncol
– year: 2021
– volume: 13
  year: 2018
  article-title: Multiscale modelling of blood flow in cerebral microcirculation: details at capillary scale control accuracy at the level of the cortex
  publication-title: PloS One
– volume: 50
  start-page: 427
  year: 2011
  end-page: 434
  article-title: Magnetic resonance imaging of tumor necrosis
  publication-title: Acta Oncol
– volume: 67
  year: 2022
  article-title: Incorporating cross‐voxel exchange for the analysis of dynamic contrast‐enhanced imaging data: pre‐clinical results
  publication-title: Phys Med Biol
– volume: 50
  start-page: 4478
  year: 1990
  end-page: 4484
  article-title: Interstitial pressure gradients in tissue‐isolated and subcutaneous tumors: implications for therapy
  publication-title: Cancer Res
– volume: 16
  year: 2023
  article-title: A review of physics‐informed machine learning in fluid mechanics
  publication-title: Energies
– volume: 86
  start-page: 86
  year: 2022
  end-page: 93
  article-title: Quantitative transport mapping (QTM) for differentiating benign and malignant breast lesion: comparison with traditional kinetics modeling and semi‐quantitative enhancement curve characteristics
  publication-title: Magn Reson Imaging
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  article-title: Optimization by simulated annealing
  publication-title: Science
– year: 2023
  article-title: Contrast‐agent‐based perfusion MRI code repository and testing framework: ISMRM Open Science Initiative for Perfusion Imaging (OSIPI)
  publication-title: Magn Reson Med
– volume: 17
  year: 2021
  article-title: Ten simple rules on writing clean and reliable open‐source scientific software
  publication-title: PLoS Comput Biol
– volume: 74
  start-page: 1
  year: 2013
  end-page: 32
  article-title: Arterial input function in perfusion MRI: a comprehensive review
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 26
  start-page: 404
  year: 2019
  end-page: 415
  article-title: A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy
  publication-title: Drug Deliv
– volume: 13
  year: 2018
  article-title: Estimating the discretization dependent accuracy of perfusion in coupled capillary flow measurements
  publication-title: PloS One
– volume: 38
  start-page: 3849
  issue: 5
  year: 2022
  end-page: 3865
  article-title: A finite element based optimization algorithm to include diffusion into the analysis of DCE‐MRI
  publication-title: Eng Comput
– volume: 62
  start-page: 46
  year: 2019
  end-page: 56
  article-title: Blind deconvolution estimation of an arterial input function for small animal DCE‐MRI
  publication-title: Magn Reson Imaging
– volume: 58
  start-page: 1983
  year: 2013
  end-page: 1998
  article-title: A diffusion‐compensated model for the analysis of DCE‐MRI data: theory, simulations, and experimental results
  publication-title: Phys Med Biol
– volume: 58
  start-page: 1124
  year: 2007
  end-page: 1134
  article-title: Incorporating contrast agent diffusion into the analysis of DCE‐MRI data
  publication-title: Magn Reson Med
– year: 2022
– start-page: 5:1‐19
  year: 2016
  article-title: How open science helps researchers succeed
  publication-title: Elife
– volume: 80
  start-page: 330
  year: 2018
  end-page: 340
  article-title: The effects of intravoxel contrast agent diffusion on the analysis of DCE‐MRI data in realistic tissue domains
  publication-title: Magn Reson Med
– start-page: 57:R1‐R33
  year: 2012
  article-title: Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability
  publication-title: Phys Med Biol
– volume: 33
  start-page: 935
  year: 2014
  end-page: 946
  article-title: A tracer‐kinetic field theory for medical imaging
  publication-title: IEEE Trans Med Imaging
– volume: 16
  start-page: 470
  year: 1990
  end-page: 475
  article-title: Does IVIM measure classical perfusion?
  publication-title: Magn Reson Med
– volume: 39
  start-page: 2760
  year: 2020
  end-page: 2771
  article-title: Patient‐specific characterization of breast cancer Hemodynamics using image‐guided computational fluid dynamics
  publication-title: IEEE Trans Med Imaging
– volume: 70
  start-page: 980
  year: 2023
  end-page: 990
  article-title: Fluid mechanics approach to perfusion quantification: vasculature computational fluid dynamics simulation, quantitative transport mapping (QTM) analysis of dynamics contrast enhanced MRI, and application in nonalcoholic fatty liver disease classification
  publication-title: IEEE Trans Biomed Eng
– volume: 17
  start-page: 241
  year: 2003
  end-page: 255
  article-title: Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow?
  publication-title: J Magn Reson Imaging
– volume: 47
  start-page: 601
  year: 2002
  end-page: 606
  article-title: Uncertainty in the analysis of tracer kinetics using dynamic contrast‐enhanced T1‐weighted MRI
  publication-title: Magn Reson Med
– volume: 67
  start-page: 519
  year: 2012
  end-page: 530
  article-title: Dynamic contrast‐enhanced‐MRI of tumor hypoxia
  publication-title: Magn Reson Med
– volume: 187
  start-page: 3
  year: 2019
  end-page: 16
  article-title: Recent progress in ASL
  publication-title: Neuroimage
– volume: 26
  start-page: 913
  year: 2013
  end-page: 931
  article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI
  publication-title: NMR Biomed
– volume: 41
  start-page: 296
  year: 2015
  end-page: 313
  article-title: Principles of T2*‐weighted dynamic susceptibility contrast MRI technique in brain tumor imaging
  publication-title: J Magn Reson Imaging
– volume: 21
  start-page: 75
  year: 2017
  end-page: 94
  article-title: Joint hydrogeophysical inversion: state estimation for seawater intrusion models in 3D
  publication-title: Comput Geosci
– volume: 60
  start-page: 1284
  year: 2008
  end-page: 1291
  article-title: Perfusion tensor imaging
  publication-title: Magn Reson Med
– volume: 82
  start-page: 2314
  year: 2019
  end-page: 2325
  article-title: Optimal mass transport kinetic modeling for head and neck DCE‐MRI: initial analysis
  publication-title: Magn Reson Med
– volume: 13
  year: 2017
  article-title: Good enough practices in scientific computing
  publication-title: PLoS Comput Biol
– volume: 27
  start-page: 1371
  year: 2008
  end-page: 1381
  article-title: Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI
  publication-title: J Magn Reson Imaging
– volume: 11
  year: 2009
  article-title: Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia
  publication-title: Neoplasia
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  article-title: Physics‐informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 61
  start-page: 6400
  year: 2001
  end-page: 6405
  article-title: Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements
  publication-title: Cancer Res
– volume: 26
  start-page: 1004
  year: 2013
  end-page: 1027
  article-title: Classic models for dynamic contrast‐enhanced MRI
  publication-title: NMR Biomed
– year: 2016
– volume: 31
  year: 2018
  article-title: Impact of contrast agent injection duration on dynamic contrast‐enhanced MRI quantification in prostate cancer
  publication-title: NMR Biomed
– volume: 17
  start-page: 357
  year: 1991
  end-page: 367
  article-title: Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts
  publication-title: Magn Reson Med
– volume: 69
  start-page: 269
  year: 2013
  end-page: 276
  article-title: In vivo measurement of gadolinium diffusivity by dynamic contrast‐enhanced MRI: a preclinical study of human xenografts
  publication-title: Magn Reson Med
– volume: 66
  year: 2021
  article-title: Incorporating cross‐voxel exchange into the analysis of dynamic contrast‐enhanced imaging data: theory, simulations and experimental results
  publication-title: Phys Med Biol
– volume: 385
  start-page: 230
  year: 2001
  end-page: 236
  article-title: Interstitial fluid pressure and blood flow in canine osteosarcoma and other tumors
  publication-title: Clin Orthop Relat Res
– volume: 1
  start-page: 3
  year: 1986
  end-page: 25
  article-title: Flow in porous media I: a theoretical derivation of Darcy's law
  publication-title: Transp Porous Media
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 23
  start-page: 2324
  year: 2015
  article-title: Reconstructing the one‐compartment tracer‐kinetic field with diffusion and convection
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 44
  start-page: 466
  year: 2000
  end-page: 473
  article-title: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition
  publication-title: Magn Reson Med
– volume: 29
  year: 2013
  article-title: Ensemble Kalman methods for inverse problems
  publication-title: Inverse Probl
– volume: 365
  year: 2020
  article-title: Conservative physics‐informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 38
  start-page: 1461
  year: 2018
  end-page: 1480
  article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow
  publication-title: J Cereb Blood Flow Metab
– volume: 41
  year: 2014
  article-title: Models and methods for analyzing DCE‐MRI: a review
  publication-title: Med Phys
– year: 2023
– volume: 9
  year: 2014
  article-title: Modeling the effect of intra‐voxel diffusion of contrast agent on the quantitative analysis of dynamic contrast enhanced magnetic resonance imaging
  publication-title: PloS One
– volume: 135
  start-page: 1692
  year: 2014
  end-page: 1699
  article-title: High tumor interstitial fluid pressure identifies cervical cancer patients with improved survival from radiotherapy plus cisplatin versus radiotherapy alone
  publication-title: Int J Cancer
– year: 1991
– volume: 169
  start-page: 689
  year: 2008
  end-page: 699
  article-title: Assessment of fraction of hypoxic cells in human tumor xenografts with necrotic regions by dynamic contrast‐enhanced MRI
  publication-title: Radiat Res
– volume: 9
  start-page: 543
  year: 2022
  article-title: ASL‐BIDS, the brain imaging data structure extension for arterial spin labeling
  publication-title: Sci Data
– volume: 85
  start-page: 2247
  year: 2021
  end-page: 2262
  article-title: Quantitative transport mapping (QTM) of the kidney with an approximate microvascular network
  publication-title: Magn Reson Med
– start-page: 449:110768
  year: 2020
  article-title: When and why PINNs fail to train: a neural tangent kernel perspective
  publication-title: J Comput Phys
– year: 2013
– ident: e_1_2_11_69_1
  doi: 10.1371/journal.pbio.1001745
– ident: e_1_2_11_18_1
  doi: 10.1002/mrm.1910160313
– ident: e_1_2_11_4_1
  doi: 10.1002/jmri.24648
– ident: e_1_2_11_14_1
  doi: 10.1002/mrm.10080
– ident: e_1_2_11_53_1
  doi: 10.1109/TBME.2022.3207057
– ident: e_1_2_11_45_1
  doi: 10.1126/science.220.4598.671
– ident: e_1_2_11_58_1
  doi: 10.7712/100016.2101.9975
– ident: e_1_2_11_47_1
  doi: 10.1002/mrm.24246
– ident: e_1_2_11_42_1
  doi: 10.1097/00003086‐200104000‐00034
– ident: e_1_2_11_52_1
  doi: 10.1016/j.mri.2021.10.039
– ident: e_1_2_11_70_1
  doi: 10.1371/journal.pcbi.1005510
– ident: e_1_2_11_15_1
  doi: 10.1016/j.pnmrs.2013.04.002
– volume: 50
  start-page: 4478
  year: 1990
  ident: e_1_2_11_40_1
  article-title: Interstitial pressure gradients in tissue‐isolated and subcutaneous tumors: implications for therapy
  publication-title: Cancer Res
– ident: e_1_2_11_50_1
  doi: 10.1088/1361‐6560/aca512
– ident: e_1_2_11_56_1
  doi: 10.1109/CVPR46437.2021.00995
– ident: e_1_2_11_74_1
  doi: 10.1016/j.jcp.2021.110768
– ident: e_1_2_11_7_1
  doi: 10.1177/0271678X17713434
– volume: 23
  start-page: 2324
  year: 2015
  ident: e_1_2_11_54_1
  article-title: Reconstructing the one‐compartment tracer‐kinetic field with diffusion and convection
  publication-title: Proc Intl Soc Mag Reson Med
– ident: e_1_2_11_55_1
  doi: 10.1109/TMI.2021.3085828
– ident: e_1_2_11_71_1
  doi: 10.1371/journal.pcbi.1009481
– ident: e_1_2_11_59_1
  doi: 10.1007/s10596‐016‐9595‐y
– ident: e_1_2_11_10_1
  doi: 10.1002/(SICI)1522‐2586(199909)10:3<223::AID‐JMRI2>3.0.CO;2‐S
– ident: e_1_2_11_35_1
  doi: 10.1667/RR1311.1
– ident: e_1_2_11_68_1
– ident: e_1_2_11_73_1
  doi: 10.1016/j.cma.2020.113028
– ident: e_1_2_11_34_1
  doi: 10.1371/journal.pone.0189474
– ident: e_1_2_11_37_1
  doi: 10.1593/neo.81360
– ident: e_1_2_11_31_1
  doi: 10.1080/10717544.2019.1588423
– ident: e_1_2_11_32_1
  doi: 10.1109/TMI.2020.2975375
– ident: e_1_2_11_28_1
  doi: 10.1002/mrm.21400
– ident: e_1_2_11_23_1
  doi: 10.1002/jmri.21386
– ident: e_1_2_11_49_1
  doi: 10.1088/1361‐6560/AC2205
– ident: e_1_2_11_22_1
  doi: 10.1126/science.aaw4741
– ident: e_1_2_11_43_1
  doi: 10.1002/ijc.28403
– ident: e_1_2_11_72_1
  doi: 10.3390/en16052343
– ident: e_1_2_11_11_1
  doi: 10.1088/0031‐9155/57/2/R1
– ident: e_1_2_11_61_1
  doi: 10.1007/BF01036523
– ident: e_1_2_11_3_1
  doi: 10.1007/s11547‐020‐01220‐z
– ident: e_1_2_11_26_1
  doi: 10.1016/j.mri.2019.05.024
– ident: e_1_2_11_36_1
  doi: 10.3109/0284186X.2010.526633
– ident: e_1_2_11_62_1
  doi: 10.1088/0266‐5611/29/4/045001
– ident: e_1_2_11_63_1
  doi: 10.7554/eLife.16800
– ident: e_1_2_11_2_1
  doi: 10.1118/1.4898202
– ident: e_1_2_11_8_1
  doi: 10.1016/j.neuroimage.2017.12.095
– ident: e_1_2_11_75_1
  doi: 10.1002/mrm.10567
– ident: e_1_2_11_30_1
  doi: 10.1371/journal.pone.0108726
– volume-title: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing
  year: 1991
  ident: e_1_2_11_44_1
– ident: e_1_2_11_21_1
  doi: 10.1016/j.jcp.2018.10.045
– ident: e_1_2_11_12_1
  doi: 10.1002/nbm.2940
– ident: e_1_2_11_33_1
  doi: 10.1016/j.media.2021.102186
– ident: e_1_2_11_16_1
  doi: 10.1002/nbm.2833
– ident: e_1_2_11_20_1
  doi: 10.1109/TMI.2014.2300450
– ident: e_1_2_11_25_1
  doi: 10.1002/mrm.22101
– ident: e_1_2_11_65_1
  doi: 10.1002/mrm.29826
– ident: e_1_2_11_76_1
  doi: 10.1002/nbm.3946
– ident: e_1_2_11_60_1
  doi: 10.1007/s00366‐022‐01667‐w
– ident: e_1_2_11_13_1
  doi: 10.1002/1522‐2594(200009)44:3<466::AID‐MRM18>3.0.CO;2‐M
– ident: e_1_2_11_27_1
– ident: e_1_2_11_57_1
  doi: 10.1109/CVPR52688.2022.01823
– ident: e_1_2_11_24_1
  doi: 10.1002/mrm.21806
– ident: e_1_2_11_9_1
  doi: 10.1002/mrm.1910170208
– ident: e_1_2_11_38_1
  doi: 10.1002/mrm.23014
– ident: e_1_2_11_46_1
  doi: 10.1088/0031‐9155/58/6/1983
– ident: e_1_2_11_29_1
– volume: 61
  start-page: 6400
  year: 2001
  ident: e_1_2_11_41_1
  article-title: Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements
  publication-title: Cancer Res
– ident: e_1_2_11_48_1
  doi: 10.1002/mrm.27897
– ident: e_1_2_11_5_1
  doi: 10.1093/neuonc/noaa141
– ident: e_1_2_11_17_1
  doi: 10.1371/journal.pone.0200521
– ident: e_1_2_11_51_1
  doi: 10.1002/mrm.28584
– ident: e_1_2_11_64_1
– ident: e_1_2_11_19_1
  doi: 10.1002/jmri.10240
– ident: e_1_2_11_66_1
  doi: 10.1038/s41597‐022‐01615‐9
– ident: e_1_2_11_39_1
  doi: 10.1002/mrm.26995
– ident: e_1_2_11_6_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_11_67_1
SSID ssj0009974
Score 2.492929
SecondaryResourceType review_article
Snippet In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1136
SubjectTerms Computer Processing and Modeling
Contrast Media
DCE‐MRI
DSC‐MRI
Image contrast
Inverse problems
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Nomenclature
Perfusion
Review
Spatio-Temporal Analysis
spatiotemporal modeling
Systematic errors
tracer kinetics
Title Current status in spatiotemporal analysis of contrast‐based perfusion MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29906
https://www.ncbi.nlm.nih.gov/pubmed/37929645
https://www.proquest.com/docview/2904035871
https://www.proquest.com/docview/2886598923
https://pubmed.ncbi.nlm.nih.gov/PMC10962600
Volume 91
WOSCitedRecordID wos001096281600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RaBGXQmmBFIrcigOXQOI4diJOqGUFgl2hFah7ixzbUVeCLNrscu4j9Bl5EsZONrCiSJV6iRJ5ojieH489428A9golFHoRia9ZmOMCJRe-jDjzpZYFzQOumZau2ITo9ZLBIL1cgKPZWZgaH6LdcLOa4ey1VXCZV4dPoKG349sDa0v5G1gKw0hYkabs8glxN60hmAWzhiZlM1ihgB62r85PRi88zJeJks8dWDcDdVb_q-9r8L5xPMlxLSkfYMGU67DcbULr6_DO5YKq6iOcN5hNxB42mlZkWJLK5V03MFY3RDZIJmRUEJfrLqvJw-8_dkbU5M6Mi6ndgyPd_tknuO6cXH0_9ZuaC75iuDL0eW5CHRRc5Mgxg-6fDhTnWuWayjhiRRhLlkoWG5YWWtJQciVMrIyyEckgNdEGLJaj0mwBETrWFs-P2yq7qVbIfs4pLYQxYcIV82B_NviZagDJbV2Mm6yGUqYZDlPmhsmDby3pXY3C8TeinRkHs0YRK2xBKxXFuCz04GvbjCpk4yKyNKMp0iQJj9MEXV0PNmuGt19BubKB6diDZE4UWgILzz3fUg5_OZhuHA67WgzwP50svN7zrNvvupvP_066DSsU_as6HW4HFifjqfkCb9X9ZFiNd50q4FUMkl1Y-tHvXF_g08-z3iNE2RJF
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLZReWigF0qdBHLiE5uFHLPWCCqtW3azQqpV6ixzbESu12Wqzy5mfwG_kl9R2vCmrglSJWyRPFGc8M57xjL8B-FBJJo0XkYUKx6UJUEoWipTiUChRJWVEFVbCNZtgw2F2dcW_rcDx4i5Miw_RHbhZzXD22iq4PZA-ukcNvZnefLLGlD6BVWzEiPRg9cuofzm4B93lLQozw9bWcLxAFoqSo-7l5f3ogZP5sFbyTx_WbUL9zf-b_gvY8M4n-txKy0tY0fUWrOU-vb4Fz1w9qGxewbnHbUL2wtG8QeMaNa722kNZXSPh0UzQpEKu3l00s98_f9ldUaFbPa3m9hwO5aOzbbjsf704OQ1934VQYhMdhrTUsYoqykqzatq4gCqSlCpZqkSQFFcxEZgLTDTmlRJJLKhkmkgtbVYy4jp9Db16Uuu3gJgiymL6UdtplytpRIDSJKmY1nFGJQ7g44L7hfSg5LY3xnXRwiknhWFT4dgUwPuO9LZF4vgb0d5iCQuvjI0ZMZYqJSY0DOBdN2zUyOZGRK0nc0OTZZTwzLi7AbxpV7z7Ssq4TU6TALIlWegILET38kg9_u6gug07bMQYmf90wvDvmRf5KHcPO48nPYTnpxf5oBicDc93YT0x_lZbHrcHvdl0rvfhqfwxGzfTA68Zd_LXFCs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiouFAqFQAGDOHAJzcOPWOKCWlZUZVerCqTeIscPdaU2u9rscu5P6G_klzB2simrgoTELZInijOeGc94xt8AvHNaaPQiitjQtMIApRKxyjmNlVEuqxJuqFGh2YQYjYqzMznegI-ruzAtPkR_4OY1I9hrr-B2ZtzBDWro5fzygzem_A5sUYY21uM60_EN5K5sMZgF9ZZG0hWuUJId9K-u70a3XMzblZK_e7BhCxrs_N_kH8KDzvUkn1pZeQQbtt6F7WGXXN-Fe6EaVDeP4aRDbSL-utGyIZOaNKHyugOyuiCqwzIhU0dCtbtqFj-vrv2eaMjMzt3Sn8KR4enxE_g--Pzt8EvcdV2INcXYMOaVTU3iuKhwzSw6gCbRnBtdmUyxnLqUKSoVZZZKZ1SWKq6FZdpqn5NMpM33YLOe1vYZEGGY8Yh-3PfZlUajAHCeZU5YmxZc0wjer7hf6g6S3HfGuChbMOWsRDaVgU0RvO1JZy0Ox5-I9ldLWHaq2OAI2qmcYWAYwZt-GJXIZ0ZUbadLpCkKzmSBzm4ET9sV77-SC-lT0yyCYk0WegIP0L0-Uk_OA1A3ssPHiwn-ZxCGv8-8HJ4Ow8Pzfyd9Ddvjo0H59Xh08gLuZ-hstbVx-7C5mC_tS7irfywmzfxVUItfhu8SFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+in+spatiotemporal+analysis+of+contrast-based+perfusion+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Shalom%2C+Eve+S&rft.au=Khan%2C+Amirul&rft.au=Van+Loo%2C+Sven&rft.au=Sourbron%2C+Steven+P&rft.date=2024-03-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=91&rft.issue=3&rft.spage=1136&rft_id=info:doi/10.1002%2Fmrm.29906&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon