Data-driven policy iteration algorithm for optimal control of continuous-time Itô stochastic systems with Markovian jumps

This studies the infinite horizon optimal control problem for a class of continuous-time systems subjected to multiplicative noises and Markovian jumps by using a data-driven policy iteration algorithm. The optimal control problem is equivalent to solve a stochastic coupled algebraic Riccatic equati...

Full description

Saved in:
Bibliographic Details
Published in:IET control theory & applications Vol. 10; no. 12; pp. 1431 - 1439
Main Authors: Song, Jun, He, Shuping, Liu, Fei, Niu, Yugang, Ding, Zhengtao
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 08.08.2016
Subjects:
ISSN:1751-8644, 1751-8652
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This studies the infinite horizon optimal control problem for a class of continuous-time systems subjected to multiplicative noises and Markovian jumps by using a data-driven policy iteration algorithm. The optimal control problem is equivalent to solve a stochastic coupled algebraic Riccatic equation (CARE). An off-line iteration algorithm is first established to converge the solutions of the stochastic CARE, which is generalised from an implicit iterative algorithm. By applying subsystems transformation (ST) technique, the off-line iterative algorithm is decoupled into N parallel Kleinman's iterative equations. To learn the solution of the stochastic CARE from N decomposed linear subsystems data, an ST-based data-driven policy iteration algorithm is proposed and the convergence is proved. Finally, a numerical example is given to illustrate the effectiveness and applicability of the proposed two iterative algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2015.0973