Online Learning Based on Online DCA and Application to Online Classification

We investigate an approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for online learning techniques. The prediction problem of an online learner can be formulated as a DC program for which online DCA is applied. We propose the two so-called complete/approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation Jg. 32; H. 4; S. 759
Hauptverfasser: Le Thi, Hoai An, Ho, Vinh Thanh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.2020
ISSN:1530-888X, 1530-888X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate an approach based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for online learning techniques. The prediction problem of an online learner can be formulated as a DC program for which online DCA is applied. We propose the two so-called complete/approximate versions of online DCA scheme and prove their logarithmic/sublinear regrets. Six online DCA-based algorithms are developed for online binary linear classification. Numerical experiments on a variety of benchmark classification data sets show the efficiency of our proposed algorithms in comparison with the state-of-the-art online classification algorithms.
Bibliographie:content type line 23
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
ISSN:1530-888X
1530-888X
DOI:10.1162/neco_a_01266