Simulation optimization: a review of algorithms and applications

Simulation optimization refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or mult...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:4OR Ročník 12; číslo 4; s. 301 - 333
Hlavní autoři: Amaran, Satyajith, Sahinidis, Nikolaos V., Sharda, Bikram, Bury, Scott J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Témata:
ISSN:1619-4500, 1614-2411
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Simulation optimization refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs, homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can imagine, there exist several competing algorithms for each of these classes of problems. This document emphasizes the difficulties in simulation optimization as compared to algebraic model-based mathematical programming makes reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used, reviews some of the diverse applications that have been tackled by these methods, and speculates on future directions in the field.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1619-4500
1614-2411
DOI:10.1007/s10288-014-0275-2