A polynomial oracle-time algorithm for convex integer minimization

In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. W...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 126; číslo 1; s. 97 - 117
Hlavní autori: Hemmecke, Raymond, Onn, Shmuel, Weismantel, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.01.2011
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N -fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N -fold integer minimization problems for which our approach provides polynomial time solution algorithms.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-009-0276-7