Estimating inverse-probability weights for longitudinal data with dropout or truncation: The xtrccipw command

Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, 6: 241-258) developed a method to conduct re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Stata journal Jg. 17; H. 2; S. 253
Hauptverfasser: Daza, Eric J, Hudgens, Michael G, Herring, Amy H
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.06.2017
Schlagworte:
ISSN:1536-867X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, 6: 241-258) developed a method to conduct regression conditioning on nontruncation, that is, regression conditioning on continuation (RCC), for longitudinal outcomes that are monotonically missing at random (for example, because of dropout). This method first estimates the probability of dropout among continuing individuals to construct inverse-probability weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs. In this article, we present the xtrccipw command, which can both estimate the IPWs required by RCC and then use these IPWs in a GEE estimator by calling the glm command from within xtrccipw. In the absence of truncation, the xtrccipw command can also be used to run a weighted GEE analysis. We demonstrate the xtrccipw command by analyzing an example dataset and the original Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some empirical properties of RCC through a simulation study.
AbstractList Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, Biostatistics 6: 241-258) developed a method to conduct regression conditioning on nontruncation, that is, regression conditioning on continuation (RCC), for longitudinal outcomes that are monotonically missing at random (for example, because of dropout). This method first estimates the probability of dropout among continuing individuals to construct inverse-probability weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs. In this article, we present the xtrccipw command, which can both estimate the IPWs required by RCC and then use these IPWs in a GEE estimator by calling the glm command from within xtrccipw. In the absence of truncation, the xtrccipw command can also be used to run a weighted GEE analysis. We demonstrate the xtrccipw command by analyzing an example dataset and the original Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some empirical properties of RCC through a simulation study.Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, Biostatistics 6: 241-258) developed a method to conduct regression conditioning on nontruncation, that is, regression conditioning on continuation (RCC), for longitudinal outcomes that are monotonically missing at random (for example, because of dropout). This method first estimates the probability of dropout among continuing individuals to construct inverse-probability weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs. In this article, we present the xtrccipw command, which can both estimate the IPWs required by RCC and then use these IPWs in a GEE estimator by calling the glm command from within xtrccipw. In the absence of truncation, the xtrccipw command can also be used to run a weighted GEE analysis. We demonstrate the xtrccipw command by analyzing an example dataset and the original Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some empirical properties of RCC through a simulation study.
Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, 6: 241-258) developed a method to conduct regression conditioning on nontruncation, that is, regression conditioning on continuation (RCC), for longitudinal outcomes that are monotonically missing at random (for example, because of dropout). This method first estimates the probability of dropout among continuing individuals to construct inverse-probability weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs. In this article, we present the xtrccipw command, which can both estimate the IPWs required by RCC and then use these IPWs in a GEE estimator by calling the glm command from within xtrccipw. In the absence of truncation, the xtrccipw command can also be used to run a weighted GEE analysis. We demonstrate the xtrccipw command by analyzing an example dataset and the original Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some empirical properties of RCC through a simulation study.
Author Hudgens, Michael G
Herring, Amy H
Daza, Eric J
Author_xml – sequence: 1
  givenname: Eric J
  surname: Daza
  fullname: Daza, Eric J
  organization: Stanford Prevention Research Center, Stanford University, Stanford, CA
– sequence: 2
  givenname: Michael G
  surname: Hudgens
  fullname: Hudgens, Michael G
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
– sequence: 3
  givenname: Amy H
  surname: Herring
  fullname: Herring, Amy H
  organization: Department of Biostatistics and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29755297$$D View this record in MEDLINE/PubMed
BookMark eNo1kEtLAzEUhbOo2If-AReSpZvRPCaT0Z2U-oCCmwruhrymjcwkY5Kx9t-bYoXLuXD4OHDOHEycdwaAK4xuMeb8DjNa1RX_wBzlQwSRCZgdzeLoTsE8xk-ESo4JOQdTcs8ZyzID_Som24tk3RZa921CNMUQvBTSdjYd4N7Y7S5F2PoAO--2No3aOtFBLZKAe5t2UAc_-DHBTKQwOpXDvHuAm52BPykoZYc9VL7vhdMX4KwVXTSXp78A70-rzfKlWL89vy4f14UqS5IKozCRTBqGKZemolSgqq0w1jXFumoN11xKXVLJ6lyUt6gVWFBSasZrZkpNFuDmLzdX-RpNTE1vozJdJ5zxY2wIojVHJI-R0esTOsre6GYIeY5waP4nIr8UP2tc
CitedBy_id crossref_primary_10_1093_geronb_gbae195
crossref_primary_10_1186_s12874_018_0499_5
crossref_primary_10_1016_j_archger_2024_105701
crossref_primary_10_1111_pirs_12751
crossref_primary_10_2519_jospt_2024_12864
crossref_primary_10_1007_s00415_022_11203_x
crossref_primary_10_1007_s11121_019_01050_0
crossref_primary_10_1016_j_socscimed_2025_117976
crossref_primary_10_1164_rccm_202308_1452OC
crossref_primary_10_1017_S1041610220000447
crossref_primary_10_1016_j_spc_2023_06_001
crossref_primary_10_1016_j_bbih_2023_100705
crossref_primary_10_1002_pst_2258
crossref_primary_10_3389_fdgth_2025_1435917
ContentType Journal Article
DBID NPM
7X8
DOI 10.1177/1536867X1701700202
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 29755297
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P2C HD050924
– fundername: NIAID NIH HHS
  grantid: P30 AI050410
– fundername: NIAID NIH HHS
  grantid: R01 AI085073
– fundername: NCCDPHP CDC HHS
  grantid: U48 DP001944
– fundername: ACL HHS
  grantid: U48DP001944
– fundername: NICHD NIH HHS
  grantid: R24 HD050924
– fundername: NIAID NIH HHS
  grantid: R01 AI029168
– fundername: NCCDPHP CDC HHS
  grantid: U48 DP000059
– fundername: NIEHS NIH HHS
  grantid: R01 ES020619
GroupedDBID -TM
-~X
0R~
123
51Z
54M
AADUE
AAGLT
AAHPS
AAPII
AAQXI
AARIX
AATAA
ABCCA
ABDBF
ABEHJ
ABIDT
ABKRH
ABPNF
ABRHV
ABTDE
ABUJY
ACCVC
ACDXX
ACHQT
ACJER
ACOFE
ACOXC
ACROE
ACSIQ
ACUHS
ACUIR
ADEBD
ADRRZ
AEEHM
AENEX
AESZF
AEWDL
AEWHI
AEXNY
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AHDMH
AJGYC
AJUZI
AJVBE
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMNSR
ANDLU
ARTOV
BPACV
DOPDO
DV7
EAP
EBS
EJD
ESX
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
IAO
INS
ITC
J8X
JAG
NPM
OJV
OK1
SAFTQ
SAUOL
SCNPE
SFC
SJN
YHZ
ZPPRI
7X8
AJHME
ID FETCH-LOGICAL-c442t-ec12b5be5137be633a06f611d831d6fe7d7bbd43b582027f0fa1a324d5785e4d2
IEDL.DBID 7X8
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406436600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-867X
IngestDate Sat Sep 27 19:47:06 EDT 2025
Mon Jul 21 06:03:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords xtrccipw
weighted GEE
st0474
generalized estimating equations
dropout
inverse-probability weights
missing at random
truncation
longitudinal data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-ec12b5be5137be633a06f611d831d6fe7d7bbd43b582027f0fa1a324d5785e4d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/1536867X1701700202
PMID 29755297
PQID 2038702122
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2038702122
pubmed_primary_29755297
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Stata journal
PublicationTitleAlternate Stata J
PublicationYear 2017
SSID ssj0047122
Score 2.2323184
Snippet Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 253
Title Estimating inverse-probability weights for longitudinal data with dropout or truncation: The xtrccipw command
URI https://www.ncbi.nlm.nih.gov/pubmed/29755297
https://www.proquest.com/docview/2038702122
Volume 17
WOSCitedRecordID wos000406436600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UeqgHl7rVjRG8BppMMpN6EZEWD7b0oJBbyCyRgp3UJrH6730vSetJELwMIRvJzJs337zle4TcKCRRE4I7RgawQelzmFJJYByA3kwZJfxQVonCT2I8DqOoP2kMbnkTVrnSiZWi1plCGzls0hmIFiha727-7mDVKPSuNiU0NkmLAZTBkC4Rrb0IoHcrLwJMau6EXESrpBlMN4dzeArpyAViJu93iFktNcO9_37kPtltQCa9r6XigGwY2yE7ozVDa94hbUSZNUnzIZkN4ACv2Fc6tRioYRysNFNzeH_RZWU_zSkAXPqWYYWjUmM1LYrxpRRNuVRjtYWyoHBHsShtbQi8pSCF9LNYKDWdLyn8wyyx-oi8DAfPD49OU4fBUb7vFY5RricDaQKXCWk4Y0mPp9x1dchczVMjtJBS-0wGIZpS0l6auAkANY1EOsbX3jHZspk1p4SaIDSJJ6ViAt6tQcUZkQKEEzBUuueqLrledWwMco7Oi8SarMzjn67tkpN6dOJ5TcgRY3ZwAM3ZH54-J20PV-bKkHJBWinMcnNJttUHdPriqhIgaMeT0TfQM9Fo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+inverse-probability+weights+for+longitudinal+data+with+dropout+or+truncation%3A+The+xtrccipw+command&rft.jtitle=The+Stata+journal&rft.au=Daza%2C+Eric+J&rft.au=Hudgens%2C+Michael+G&rft.au=Herring%2C+Amy+H&rft.date=2017-06-01&rft.issn=1536-867X&rft.volume=17&rft.issue=2&rft.spage=253&rft_id=info:doi/10.1177%2F1536867X1701700202&rft_id=info%3Apmid%2F29755297&rft_id=info%3Apmid%2F29755297&rft.externalDocID=29755297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-867X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-867X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-867X&client=summon