Random fuzzy chance-constrained programming based on adaptive chaos quantum honey bee algorithm and robustness analysis

This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained programming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine intelligence research (Print) Ročník 7; číslo 1; s. 115 - 122
Hlavní autoři: Xue, Han, Li, Xun, Ma, Hong-Xu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Springer Nature B.V 01.02.2010
Témata:
ISSN:2153-182X, 2153-1838
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained programming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of convergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2153-182X
2153-1838
DOI:10.1007/s11633-010-0115-6