Asymptotic analysis of Sturm-Liouville problem with Dirichlet and nonlocal two-point boundary conditions

In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one–dimensional Sturm–Liouville equation with one classical Dirichlet type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis Jg. 28; H. 2; S. 308 - 329
Hauptverfasser: Stikonas, Arturas, Sen, Erdogan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vilnius Vilnius Gediminas Technical University 21.03.2023
Schlagworte:
ISSN:1392-6292, 1648-3510
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one–dimensional Sturm–Liouville equation with one classical Dirichlet type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for eigenvalues and derive asymptotic expansions of arbitrary order. We apply the obtained results to the problem with two-point nonlocal boundary condition.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2023.17617