Asymptotic analysis of Sturm-Liouville problem with Dirichlet and nonlocal two-point boundary conditions

In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one–dimensional Sturm–Liouville equation with one classical Dirichlet type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical modelling and analysis Ročník 28; číslo 2; s. 308 - 329
Hlavní autoři: Stikonas, Arturas, Sen, Erdogan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vilnius Vilnius Gediminas Technical University 21.03.2023
Témata:
ISSN:1392-6292, 1648-3510
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one–dimensional Sturm–Liouville equation with one classical Dirichlet type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for eigenvalues and derive asymptotic expansions of arbitrary order. We apply the obtained results to the problem with two-point nonlocal boundary condition.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2023.17617