A faster strongly polynomial time algorithm for submodular function minimization

We consider the problem of minimizing a submodular function f defined on a set V with n elements. We give a combinatorial algorithm that runs in O( n 5 EO  +  n 6 ) time, where EO is the time to evaluate f ( S ) for some . This improves the previous best strongly polynomial running time by more than...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 118; číslo 2; s. 237 - 251
Hlavní autor: Orlin, James B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.05.2009
Springer
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of minimizing a submodular function f defined on a set V with n elements. We give a combinatorial algorithm that runs in O( n 5 EO  +  n 6 ) time, where EO is the time to evaluate f ( S ) for some . This improves the previous best strongly polynomial running time by more than a factor of n . We also extend our result to ring families.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-007-0189-2