Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm

Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 80; s. 535 - 544
Hlavní autoři: Rao, R.V., More, K.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2015
Témata:
ISSN:0360-5442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. •The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe.•Two examples of heat pipe design and optimization are presented.•The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence.
AbstractList Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. •The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe.•Two examples of heat pipe design and optimization are presented.•The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence.
Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching-Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms.
Author More, K.C.
Rao, R.V.
Author_xml – sequence: 1
  givenname: R.V.
  surname: Rao
  fullname: Rao, R.V.
– sequence: 2
  givenname: K.C.
  orcidid: 0000-0002-8127-6695
  surname: More
  fullname: More, K.C.
  email: kiran.imagine67@gmail.com
BookMark eNqFkLtu3DAQRVk4gB_xH7hg6RRShtSDUooAiZEXsMA2TmkQI2q0y4WWVEhuALvKP-QP8yXhZlOliKuZAc69GJxLdua8I8ZuBJQCRPt6V5KjsHksJYi6FLIE6M7YBVQtFE1dy3N2GeMOAJqu7y_Yw3pJdo8zHynajeN-4mlLfEuY-GIX4odo3Ybfr96v-W0iNNt8_vrxcyYMLq_FgJFG7o8t9gmT9e4Vx3njg03b_Uv2YsI50vXfecW-fvxwf_e5WK0_fbl7typM_igVCmtFQyeVhHYcUIGADoYJCSdVSVOBMK1pRKNobMwwYgU1qh5FO4wTyIaqK3Z76l2C_3agmPTeRkPzjI78IWopRNv1bVPJZ9EMNqpXACKj9Qk1wccYaNJLyK7Coxagj7L1Tp9k66NsLaTOsnPszT8xY9MfMymgnZ8Lvz2FKev6binoaCw5Q6MNZJIevf1_wW8lZqL0
CitedBy_id crossref_primary_10_1002_ceat_201900411
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_018
crossref_primary_10_1016_j_expthermflusci_2017_02_005
crossref_primary_10_1007_s00366_018_0627_1
crossref_primary_10_1016_j_psep_2023_09_048
crossref_primary_10_1016_j_advengsoft_2022_103206
crossref_primary_10_1007_s00231_016_1861_y
crossref_primary_10_1007_s11042_022_12017_9
crossref_primary_10_1061__ASCE_HE_1943_5584_0001963
crossref_primary_10_1080_23744731_2017_1296319
crossref_primary_10_1016_j_wear_2025_205750
crossref_primary_10_1016_j_applthermaleng_2023_120202
crossref_primary_10_1109_JSEN_2017_2762359
crossref_primary_10_1155_2022_7455340
crossref_primary_10_1007_s12046_016_0553_0
crossref_primary_10_1016_j_applthermaleng_2017_03_080
crossref_primary_10_1016_j_knosys_2016_06_019
crossref_primary_10_3390_en15145069
crossref_primary_10_1007_s00107_019_01416_9
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124434
crossref_primary_10_1016_j_knosys_2018_01_021
crossref_primary_10_1016_j_compchemeng_2017_01_024
crossref_primary_10_1016_j_jmapro_2025_01_092
crossref_primary_10_1016_j_asoc_2016_02_044
crossref_primary_10_1002_er_8420
crossref_primary_10_1016_j_petrol_2018_08_076
crossref_primary_10_1016_j_energy_2024_134000
crossref_primary_10_1016_j_heliyon_2023_e16955
crossref_primary_10_1016_j_applthermaleng_2024_124052
crossref_primary_10_1016_j_apenergy_2018_04_020
crossref_primary_10_1007_s13369_021_05710_8
crossref_primary_10_1016_j_matpr_2023_09_189
crossref_primary_10_1016_j_enconman_2018_03_076
crossref_primary_10_1063_5_0275856
crossref_primary_10_1007_s40430_019_2072_5
crossref_primary_10_1080_10426914_2020_1772484
crossref_primary_10_1155_2016_9837058
crossref_primary_10_1007_s12206_024_0437_x
crossref_primary_10_1007_s11831_022_09766_z
crossref_primary_10_1080_01457632_2017_1363629
crossref_primary_10_1007_s10462_025_11279_7
crossref_primary_10_1007_s00521_021_05980_1
crossref_primary_10_1016_j_neucom_2023_126898
crossref_primary_10_1016_j_applthermaleng_2015_10_013
crossref_primary_10_1016_j_enconman_2017_02_068
crossref_primary_10_1007_s00521_016_2738_1
crossref_primary_10_1177_0957650917717626
crossref_primary_10_1016_j_jsv_2019_02_017
crossref_primary_10_1080_10407782_2019_1630241
Cites_doi 10.1007/BF03177454
10.1016/j.applthermaleng.2011.06.026
10.1016/j.enconman.2012.06.004
10.1016/j.engappai.2014.01.016
10.1016/S0017-9310(02)00504-5
10.1016/j.applthermaleng.2010.02.010
10.1016/j.applthermaleng.2009.07.011
10.1016/S0735-1933(99)00054-8
10.1016/j.cad.2010.12.015
10.1016/j.ins.2014.02.056
10.1016/j.applthermaleng.2007.02.001
10.1016/j.applthermaleng.2009.05.008
10.1016/j.ijheatmasstransfer.2009.12.032
10.1016/j.ijheatmasstransfer.2011.06.018
10.1016/j.applthermaleng.2014.01.030
10.1016/j.egypro.2014.02.020
10.1016/j.ins.2012.11.009
10.1016/j.ijheatmasstransfer.2013.12.068
10.1016/S1359-4311(00)00066-1
10.1016/j.swevo.2013.12.005
10.1080/0305215X.2011.652103
10.1016/j.ijheatfluidflow.2010.07.002
10.1016/j.enconman.2010.03.003
10.1016/j.apm.2004.04.004
10.1016/j.ins.2011.08.006
10.1109/IECEC.1989.74435
10.1016/j.ijheatmasstransfer.2006.02.059
10.1016/j.ijheatmasstransfer.2010.09.006
10.1007/s11431-012-4885-7
10.1016/j.ijthermalsci.2011.09.017
10.1016/j.microrel.2014.02.034
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
DOI 10.1016/j.energy.2014.12.008
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 544
ExternalDocumentID 10_1016_j_energy_2014_12_008
S0360544214013668
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c442t-7a47eb827206dba701080bfaeaf732c301c6c5157ed5cbda304a79a16bdf025e3
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349723500049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 00:09:37 EDT 2025
Wed Oct 01 17:11:53 EDT 2025
Sat Nov 29 02:04:59 EST 2025
Tue Nov 18 22:41:10 EST 2025
Fri Feb 23 02:20:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Teaching–learning-based optimization algorithm
Multi-objective optimization
Heat pipe
Micro-grooves
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-7a47eb827206dba701080bfaeaf732c301c6c5157ed5cbda304a79a16bdf025e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8127-6695
PQID 1685797001
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_2116896532
proquest_miscellaneous_1685797001
crossref_primary_10_1016_j_energy_2014_12_008
crossref_citationtrail_10_1016_j_energy_2014_12_008
elsevier_sciencedirect_doi_10_1016_j_energy_2014_12_008
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Maheshkumar, Muraleedharan (bib18) 2011; 54
Kim, Seo, Do (bib4) 2003; 46
Baykasoglu, Hamzadayi, Köse (bib42) 2014; 276
Rao, Patel (bib36) 2013; 4
Vlassov, Sousa, Takahashi (bib10) 2006; 49
Riegler (bib6) 2003
Kiseev, Vlassov, Muraoka (bib16) 2010; 30
Shabgard, Faghri (bib21) 2011; 31
Lips, Lefèvre (bib28) 2011; 72
Satapathy, Naik (bib43) 2014; 16
Maziuk, Kulakov, Rabetsky, Vasiliev, Vukovic (bib3) 2009; 21
Liang, Hung (bib14) 2010; 51
Nithiynandam, Pitchumani (bib19) 2011; 54
Chang, Jung, Lee, Choi, Kim (bib27) 2007; 27
Zhang, Chen, Shi, Peterson (bib12) 2009; 29
Senthilkumar (bib15) 2010; 2
Waghmare (bib41) 2013; 229
Wang (bib29) 2014; 54
Wu, Mochizuki, Saito, Nguyen, Wuttijumnong, Wu (bib5) 2003
Shi, Chua, Stephan, Wong, Tan (bib9) 2006; 34
Roper (bib20) 2010; 32
Agha (bib22) 2011; 1
Bertossi, Guilhem, Ayel, Romestant, Bertin (bib23) 2012; 52
Dong, Zhen, JiAn, ZhiXin (bib25) 2012; 55
Rao, Rakhade (bib30) 2011; 2
Rao, Waghmare (bib40) 2014
Jeong, Kobayami, Yoshimura (bib11) 2007; 21
Rao, More (bib38) 2014; 2
Morawietz, Hermann (bib32) 2014; 48
Rao, Savsani (bib39) 2012
Kiseev, Vlassov, Muraoka (bib13) 2010; 53
Sousa, Vlassov, Ramos (bib7) 2004; 28
Yau, Ahmadzadehtalpatapeh (bib17) 2010; 30
Wan, Wang, Tang (bib24) 2012; 64
Medina, Das, Coello, Ramirez (bib44) 2014; 32
Ornelas (bib8) 2006
Rao, Patel (bib37) 2012; 3
Said, Akash (bib2) 1999; 26
Buksa JJ, Hillianus KA. Sprite: a computer code for the optimization of space based heat pipe radiator systems. In: Energ Convers Eng Conference 1989; Proceeding of the 24th Intersociety. vol. 1:39–44.
Rao, Savsani, Vakharia (bib35) 2011; 183
Rao, Savsani, Balic (bib33) 2011; 44
Yang, Karamanoglu, Luan, Koziel (bib26) 2014; 5
Cui, Zhu, Li, Shun (bib31) 2014; 65
Rao, Savsani, Vakharia (bib34) 2011; 43
Bertossi (10.1016/j.energy.2014.12.008_bib23) 2012; 52
Sousa (10.1016/j.energy.2014.12.008_bib7) 2004; 28
Cui (10.1016/j.energy.2014.12.008_bib31) 2014; 65
Rao (10.1016/j.energy.2014.12.008_bib39) 2012
Rao (10.1016/j.energy.2014.12.008_bib40) 2014
Maheshkumar (10.1016/j.energy.2014.12.008_bib18) 2011; 54
Rao (10.1016/j.energy.2014.12.008_bib35) 2011; 183
Riegler (10.1016/j.energy.2014.12.008_bib6) 2003
Liang (10.1016/j.energy.2014.12.008_bib14) 2010; 51
Rao (10.1016/j.energy.2014.12.008_bib37) 2012; 3
Maziuk (10.1016/j.energy.2014.12.008_bib3) 2009; 21
Chang (10.1016/j.energy.2014.12.008_bib27) 2007; 27
Nithiynandam (10.1016/j.energy.2014.12.008_bib19) 2011; 54
Dong (10.1016/j.energy.2014.12.008_bib25) 2012; 55
Waghmare (10.1016/j.energy.2014.12.008_bib41) 2013; 229
Baykasoglu (10.1016/j.energy.2014.12.008_bib42) 2014; 276
Kiseev (10.1016/j.energy.2014.12.008_bib13) 2010; 53
Yau (10.1016/j.energy.2014.12.008_bib17) 2010; 30
Wang (10.1016/j.energy.2014.12.008_bib29) 2014; 54
Rao (10.1016/j.energy.2014.12.008_bib36) 2013; 4
Vlassov (10.1016/j.energy.2014.12.008_bib10) 2006; 49
Agha (10.1016/j.energy.2014.12.008_bib22) 2011; 1
Rao (10.1016/j.energy.2014.12.008_bib34) 2011; 43
Lips (10.1016/j.energy.2014.12.008_bib28) 2011; 72
Said (10.1016/j.energy.2014.12.008_bib2) 1999; 26
Kim (10.1016/j.energy.2014.12.008_bib4) 2003; 46
Rao (10.1016/j.energy.2014.12.008_bib38) 2014; 2
Ornelas (10.1016/j.energy.2014.12.008_bib8) 2006
Kiseev (10.1016/j.energy.2014.12.008_bib16) 2010; 30
Shabgard (10.1016/j.energy.2014.12.008_bib21) 2011; 31
Wan (10.1016/j.energy.2014.12.008_bib24) 2012; 64
Rao (10.1016/j.energy.2014.12.008_bib30) 2011; 2
Wu (10.1016/j.energy.2014.12.008_bib5) 2003
Medina (10.1016/j.energy.2014.12.008_bib44) 2014; 32
Jeong (10.1016/j.energy.2014.12.008_bib11) 2007; 21
Yang (10.1016/j.energy.2014.12.008_bib26) 2014; 5
Morawietz (10.1016/j.energy.2014.12.008_bib32) 2014; 48
Rao (10.1016/j.energy.2014.12.008_bib33) 2011; 44
Shi (10.1016/j.energy.2014.12.008_bib9) 2006; 34
10.1016/j.energy.2014.12.008_bib1
Zhang (10.1016/j.energy.2014.12.008_bib12) 2009; 29
Senthilkumar (10.1016/j.energy.2014.12.008_bib15) 2010; 2
Satapathy (10.1016/j.energy.2014.12.008_bib43) 2014; 16
Roper (10.1016/j.energy.2014.12.008_bib20) 2010; 32
References_xml – volume: 30
  start-page: 1312
  year: 2010
  end-page: 1319
  ident: bib16
  article-title: Experimental optimization of capillary structured for loop heat pipes and heat switches
  publication-title: Appl Therm Eng
– volume: 4
  start-page: 29
  year: 2013
  end-page: 50
  ident: bib36
  article-title: Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 65
  start-page: 394
  year: 2014
  end-page: 402
  ident: bib31
  article-title: Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe
  publication-title: Appl Therm Eng
– volume: 54
  start-page: 1344
  year: 2014
  end-page: 1354
  ident: bib29
  article-title: U and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method
  publication-title: Microelectron Reliab
– volume: 26
  start-page: 679
  year: 1999
  end-page: 684
  ident: bib2
  article-title: Experimental performance of a heat pipe
  publication-title: Int Commun Heat Mass Trans
– reference: Buksa JJ, Hillianus KA. Sprite: a computer code for the optimization of space based heat pipe radiator systems. In: Energ Convers Eng Conference 1989; Proceeding of the 24th Intersociety. vol. 1:39–44.
– volume: 64
  start-page: 35
  year: 2012
  end-page: 42
  ident: bib24
  article-title: Condenser design optimization and operation characteristics of a novel miniature loop heat pipe
  publication-title: Energy Convers Manag
– volume: 28
  start-page: 911
  year: 2004
  end-page: 931
  ident: bib7
  article-title: Generalized extremal optimization: an application in heat pipe design
  publication-title: Appl Math Model
– year: 2012
  ident: bib39
  article-title: Mechanical design optimization using advanced optimization techniques
– volume: 32
  start-page: 10
  year: 2014
  end-page: 20
  ident: bib44
  article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow- A comparative study
  publication-title: Eng Appl Artif Intel
– start-page: 185
  year: 2003
  end-page: 190
  ident: bib5
  article-title: Analyzing and modelling on optimized L-ratio of evaporator section to condenser section for micro heat pipe heat sinks
  publication-title: Semiconductor therm measur manage symposium
– volume: 2
  start-page: 564
  year: 2010
  end-page: 569
  ident: bib15
  article-title: Thermal analysis of heat pipe using Taguchi method
  publication-title: Int J Eng Sci Tech
– volume: 72
  start-page: 288
  year: 2011
  end-page: 298
  ident: bib28
  article-title: A general analytical model for the design of conventional heat pipes
  publication-title: Int J Heat Mass Trans
– volume: 32
  start-page: 239
  year: 2010
  end-page: 248
  ident: bib20
  article-title: Multi-objective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores
  publication-title: Int J Heat Fluid Flow
– volume: 16
  start-page: 28
  year: 2014
  end-page: 37
  ident: bib43
  article-title: Modified teaching-learning-based optimization algorithm for global numerical optimization- A comparative study
  publication-title: Swarm Evol Comput
– volume: 34
  start-page: 142
  year: 2006
  end-page: 147
  ident: bib9
  article-title: Design and performance optimization of miniature heat pipes in LTCC
  publication-title: J Phys
– volume: 49
  start-page: 4584
  year: 2006
  end-page: 4595
  ident: bib10
  article-title: Comprehensive optimization of a heat pipe radiator assembly filled with ammonia or acetone
  publication-title: Int J Heat Mass Trans
– volume: 27
  start-page: 2524
  year: 2007
  end-page: 2535
  ident: bib27
  article-title: Fatigue data acquisition, evaluation and optimization of district heating pipes
  publication-title: Appl Therm Eng
– year: 2014
  ident: bib40
  article-title: A comparative study of a teaching–learning-based optimization algorithm on multiobjective unconstrained and constrained functions
  publication-title: J King Saudi Univ Comput Inf Sci
– volume: 21
  start-page: 559
  year: 2009
  end-page: 571
  ident: bib3
  article-title: Miniature heat-pipe thermal performance prediction tool-software development
  publication-title: Appl Therm Eng
– volume: 5
  start-page: 119
  year: 2014
  end-page: 125
  ident: bib26
  article-title: Mathematical modeling and parameter optimization of pulsating heat pipes
  publication-title: J Comput Sci
– volume: 2
  start-page: 71
  year: 2014
  end-page: 94
  ident: bib38
  article-title: Advanced optimal tolerance design of machine elements using teaching-learning-based optimization algorithm
  publication-title: Prod Manuf Res
– volume: 276
  start-page: 204
  year: 2014
  end-page: 218
  ident: bib42
  article-title: Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling case
  publication-title: Inf Sci
– volume: 1
  start-page: 93
  year: 2011
  end-page: 97
  ident: bib22
  article-title: Heat pipe performance optimization: a Taguchi approach
  publication-title: Int J Res Mech Eng Tech
– volume: 29
  start-page: 3340
  year: 2009
  end-page: 3345
  ident: bib12
  article-title: Optimization of heat pipe with axial “Ω” shaped micro grooves based on a niched Pareto genetic algorithm (NPGA)
  publication-title: Appl Therm Eng
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib34
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comp Aided Des
– volume: 54
  start-page: 645
  year: 2011
  end-page: 648
  ident: bib18
  article-title: Minimization of entropy generation in flat heat pipe
  publication-title: Int J Heat Mass Trans
– volume: 229
  start-page: 159
  year: 2013
  end-page: 169
  ident: bib41
  article-title: Comments on ‘A note on teaching-learning-based optimization algorithm
  publication-title: Inf Sci
– volume: 51
  start-page: 2109
  year: 2010
  end-page: 2116
  ident: bib14
  article-title: Experimental investigation of thermal performance and optimization of heat sink U-shape heat pipes
  publication-title: Energy Convers Manag
– volume: 52
  start-page: 40
  year: 2012
  end-page: 49
  ident: bib23
  article-title: Modeling of heat and mass transfer in the liquid film of rotating heat pipes
  publication-title: Int J Therm Sci
– volume: 54
  start-page: 4596
  year: 2011
  end-page: 4610
  ident: bib19
  article-title: Analysis and optimization of latent thermal energy storage system with embedded heat pipes
  publication-title: Int J Heat Mass Trans
– year: 2006
  ident: bib8
  article-title: Mathematical modelling, numerical simulation and statistical optimization of heat pipe design
– volume: 55
  start-page: 2126
  year: 2012
  end-page: 2131
  ident: bib25
  article-title: Entransy dissipation analysis and optimization of separated heat pipe system
  publication-title: Sci China
– volume: 30
  start-page: 77
  year: 2010
  end-page: 84
  ident: bib17
  article-title: A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics
  publication-title: Appl Therm Energy
– volume: 21
  start-page: 1964
  year: 2007
  end-page: 1972
  ident: bib11
  article-title: Multidimensional visualization and clustering for multiobjective optimization of artificial satellite heat pipe design
  publication-title: J Mech Sci Tech
– volume: 46
  start-page: 2051
  year: 2003
  end-page: 2063
  ident: bib4
  article-title: Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure
  publication-title: Int J Heat Mass Trans
– year: 2003
  ident: bib6
  article-title: Heat transfer optimization of grooved heat pipe
– volume: 44
  start-page: 1447
  year: 2011
  end-page: 1462
  ident: bib33
  article-title: Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems
  publication-title: Eng Optim
– volume: 31
  start-page: 3410
  year: 2011
  end-page: 3419
  ident: bib21
  article-title: Performance characteristics of cylindrical heat pipes with multiple heat sources
  publication-title: Appl Therm Eng
– volume: 183
  start-page: 1
  year: 2011
  end-page: 15
  ident: bib35
  article-title: Teaching-learning-based optimization: a novel optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
– volume: 48
  start-page: 157
  year: 2014
  end-page: 162
  ident: bib32
  article-title: Integrated development and modeling of heat pipe solar collectors
  publication-title: Energy Procedia
– volume: 2
  start-page: 61
  year: 2011
  end-page: 66
  ident: bib30
  article-title: Multi-objective optimization of axial “Ω” shaped micro grooves heat pipe using grenade explosion method (GEM)
  publication-title: Int J Adv Therm Sci Eng
– volume: 53
  start-page: 2143
  year: 2010
  end-page: 2148
  ident: bib13
  article-title: Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches
  publication-title: Int J Heat Mass Trans
– volume: 3
  start-page: 535
  year: 2012
  end-page: 560
  ident: bib37
  article-title: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 21
  start-page: 1964
  year: 2007
  ident: 10.1016/j.energy.2014.12.008_bib11
  article-title: Multidimensional visualization and clustering for multiobjective optimization of artificial satellite heat pipe design
  publication-title: J Mech Sci Tech
  doi: 10.1007/BF03177454
– volume: 34
  start-page: 142
  year: 2006
  ident: 10.1016/j.energy.2014.12.008_bib9
  article-title: Design and performance optimization of miniature heat pipes in LTCC
  publication-title: J Phys
– volume: 31
  start-page: 3410
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib21
  article-title: Performance characteristics of cylindrical heat pipes with multiple heat sources
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.06.026
– volume: 64
  start-page: 35
  year: 2012
  ident: 10.1016/j.energy.2014.12.008_bib24
  article-title: Condenser design optimization and operation characteristics of a novel miniature loop heat pipe
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2012.06.004
– volume: 32
  start-page: 10
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib44
  article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow- A comparative study
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2014.01.016
– volume: 46
  start-page: 2051
  year: 2003
  ident: 10.1016/j.energy.2014.12.008_bib4
  article-title: Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/S0017-9310(02)00504-5
– year: 2003
  ident: 10.1016/j.energy.2014.12.008_bib6
– volume: 30
  start-page: 1312
  year: 2010
  ident: 10.1016/j.energy.2014.12.008_bib16
  article-title: Experimental optimization of capillary structured for loop heat pipes and heat switches
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.02.010
– volume: 2
  start-page: 71
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib38
  article-title: Advanced optimal tolerance design of machine elements using teaching-learning-based optimization algorithm
  publication-title: Prod Manuf Res
– volume: 30
  start-page: 77
  year: 2010
  ident: 10.1016/j.energy.2014.12.008_bib17
  article-title: A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics
  publication-title: Appl Therm Energy
  doi: 10.1016/j.applthermaleng.2009.07.011
– year: 2012
  ident: 10.1016/j.energy.2014.12.008_bib39
– volume: 26
  start-page: 679
  issue: 5
  year: 1999
  ident: 10.1016/j.energy.2014.12.008_bib2
  article-title: Experimental performance of a heat pipe
  publication-title: Int Commun Heat Mass Trans
  doi: 10.1016/S0735-1933(99)00054-8
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib34
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comp Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 3
  start-page: 535
  issue: 4
  year: 2012
  ident: 10.1016/j.energy.2014.12.008_bib37
  article-title: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems
  publication-title: Int J Ind Eng Comput
– start-page: 185
  year: 2003
  ident: 10.1016/j.energy.2014.12.008_bib5
  article-title: Analyzing and modelling on optimized L-ratio of evaporator section to condenser section for micro heat pipe heat sinks
– volume: 1
  start-page: 93
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib22
  article-title: Heat pipe performance optimization: a Taguchi approach
  publication-title: Int J Res Mech Eng Tech
– year: 2006
  ident: 10.1016/j.energy.2014.12.008_bib8
– volume: 2
  start-page: 564
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2014.12.008_bib15
  article-title: Thermal analysis of heat pipe using Taguchi method
  publication-title: Int J Eng Sci Tech
– volume: 276
  start-page: 204
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib42
  article-title: Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling case
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.056
– volume: 4
  start-page: 29
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2014.12.008_bib36
  article-title: Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 27
  start-page: 2524
  year: 2007
  ident: 10.1016/j.energy.2014.12.008_bib27
  article-title: Fatigue data acquisition, evaluation and optimization of district heating pipes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.02.001
– volume: 29
  start-page: 3340
  year: 2009
  ident: 10.1016/j.energy.2014.12.008_bib12
  article-title: Optimization of heat pipe with axial “Ω” shaped micro grooves based on a niched Pareto genetic algorithm (NPGA)
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2009.05.008
– volume: 53
  start-page: 2143
  year: 2010
  ident: 10.1016/j.energy.2014.12.008_bib13
  article-title: Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2009.12.032
– volume: 54
  start-page: 4596
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib19
  article-title: Analysis and optimization of latent thermal energy storage system with embedded heat pipes
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2011.06.018
– volume: 65
  start-page: 394
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib31
  article-title: Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.01.030
– volume: 48
  start-page: 157
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib32
  article-title: Integrated development and modeling of heat pipe solar collectors
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.02.020
– volume: 2
  start-page: 61
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib30
  article-title: Multi-objective optimization of axial “Ω” shaped micro grooves heat pipe using grenade explosion method (GEM)
  publication-title: Int J Adv Therm Sci Eng
– volume: 229
  start-page: 159
  year: 2013
  ident: 10.1016/j.energy.2014.12.008_bib41
  article-title: Comments on ‘A note on teaching-learning-based optimization algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.11.009
– volume: 72
  start-page: 288
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib28
  article-title: A general analytical model for the design of conventional heat pipes
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2013.12.068
– volume: 21
  start-page: 559
  year: 2009
  ident: 10.1016/j.energy.2014.12.008_bib3
  article-title: Miniature heat-pipe thermal performance prediction tool-software development
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(00)00066-1
– volume: 16
  start-page: 28
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib43
  article-title: Modified teaching-learning-based optimization algorithm for global numerical optimization- A comparative study
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.12.005
– volume: 44
  start-page: 1447
  issue: 12
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib33
  article-title: Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2011.652103
– volume: 32
  start-page: 239
  year: 2010
  ident: 10.1016/j.energy.2014.12.008_bib20
  article-title: Multi-objective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.07.002
– volume: 51
  start-page: 2109
  year: 2010
  ident: 10.1016/j.energy.2014.12.008_bib14
  article-title: Experimental investigation of thermal performance and optimization of heat sink U-shape heat pipes
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.03.003
– volume: 28
  start-page: 911
  year: 2004
  ident: 10.1016/j.energy.2014.12.008_bib7
  article-title: Generalized extremal optimization: an application in heat pipe design
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2004.04.004
– volume: 183
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib35
  article-title: Teaching-learning-based optimization: a novel optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.08.006
– ident: 10.1016/j.energy.2014.12.008_bib1
  doi: 10.1109/IECEC.1989.74435
– volume: 49
  start-page: 4584
  issue: 23–24
  year: 2006
  ident: 10.1016/j.energy.2014.12.008_bib10
  article-title: Comprehensive optimization of a heat pipe radiator assembly filled with ammonia or acetone
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2006.02.059
– volume: 54
  start-page: 645
  year: 2011
  ident: 10.1016/j.energy.2014.12.008_bib18
  article-title: Minimization of entropy generation in flat heat pipe
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2010.09.006
– volume: 55
  start-page: 2126
  issue: 8
  year: 2012
  ident: 10.1016/j.energy.2014.12.008_bib25
  article-title: Entransy dissipation analysis and optimization of separated heat pipe system
  publication-title: Sci China
  doi: 10.1007/s11431-012-4885-7
– volume: 5
  start-page: 119
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib26
  article-title: Mathematical modeling and parameter optimization of pulsating heat pipes
  publication-title: J Comput Sci
– year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib40
  article-title: A comparative study of a teaching–learning-based optimization algorithm on multiobjective unconstrained and constrained functions
  publication-title: J King Saudi Univ Comput Inf Sci
– volume: 52
  start-page: 40
  year: 2012
  ident: 10.1016/j.energy.2014.12.008_bib23
  article-title: Modeling of heat and mass transfer in the liquid film of rotating heat pipes
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2011.09.017
– volume: 54
  start-page: 1344
  issue: 6–7
  year: 2014
  ident: 10.1016/j.energy.2014.12.008_bib29
  article-title: U and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2014.02.034
SSID ssj0005899
Score 2.397559
Snippet Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 535
SubjectTerms Algorithms
Conductors
Derivatives
Design optimization
Genetic algorithms
Heat pipe
Heat pipes
Heat transfer
Micro-grooves
Multi-objective optimization
Optimization
system optimization
Teaching–learning-based optimization algorithm
Title Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm
URI https://dx.doi.org/10.1016/j.energy.2014.12.008
https://www.proquest.com/docview/1685797001
https://www.proquest.com/docview/2116896532
Volume 80
WOSCitedRecordID wos000349723500049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvCAYT4yYjIQSqUuXm2HkcUydgpUVTJ_UFWbbjjE5dWnqZ-sh_4B_ySzhO7KZlmjYeeIna5CRN-305Pj3-jg9Cb1LJIhVqHx7xKPNiJZQnfRV5GSUEogcl4E3ZbIL2emw4TL82GseuFuZyTIuCrVbp9L9CDfsAbFM6-w9wry8KO-A1gA5bgB22twK-D07gwky9lNoMpwEwPrc1HU11a1lmBwbdD30TXS6smtKJHiLbRuLMM-Nb1pqYq9laTZNBEOOzyWy0-H6xldKvCgjNyqWrSiy_Ti-ciDIXe1KLab9YZe9x-7C9mXMIiJMp53Wtle-RON7yo8xvTdskIubAhksk1XIkdnS1x6447iqHcN7W5Q0byV1cpml9Vg9UbnK-1-dHp90uH3SGg7fTH55pIWam2m0_lTtoJ6QkZU20c_CpM_xcK35Y2U50ffOukrKU-1394Osilb_G7DIQGTxED-w_CHxQIf8INXSxi-65AvP5Ltrr1MWLYGi99_wx-mapgStq4EmOgRrYUAMbauCSGthQA79zxPj989c2JfAmJd7jNSGeoNOjzuDwo2fba3gKvvzCoyKmWjIzEZ9kUlDfyE1lLrTIaRQq8PwqURDuUp0RJTMR-bGgqQgSmeUQKetoDzWLSaGfIizjOIehg4VZkMeSJlKlLGZax0GWhJLIfRS5n5Iru_a8aYEy5k5keM4rALgBgAchBwD2kbc-a1qtvXKDPXUocRs_VnEhB5bdcOZrByoH92rmzEShJ8s5DxJGaGrEGdfbhAFYpQmJwme3sHmO7teP1AvUXMyW-iW6qy4Xo_nsleXsH6-KpuE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+the+heat+pipe+using+TLBO+%28teaching%E2%80%93learning-based+optimization%29+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Rao%2C+R+V&rft.au=More%2C+K.C.&rft.date=2015-02-01&rft.issn=0360-5442&rft.volume=80+p.535-544&rft.spage=535&rft.epage=544&rft_id=info:doi/10.1016%2Fj.energy.2014.12.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon