Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly

The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neuroscience Ročník 15; s. 711898
Hlavní autoři: Neumann, Katja, Schidlowski, Martin, Günther, Matthias, Stöcker, Tony, Düzel, Emrah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 19.08.2021
Témata:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.
AbstractList The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.
The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.
Author Stöcker, Tony
Neumann, Katja
Günther, Matthias
Schidlowski, Martin
Düzel, Emrah
AuthorAffiliation 3 Department of Epileptology, University of Bonn Medical Center , Bonn , Germany
4 Fraunhofer Institute for Digital Medicine MEVIS , Bremen , Germany
7 Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg , Magdeburg , Germany
2 German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
9 Center for Behavioral Brain Science , Magdeburg , Germany
8 Institute of Cognitive Neuroscience, University College London , London , United Kingdom
1 German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany
6 Department for Physics and Astronomy, University of Bonn , Bonn , Germany
5 MR-Imaging and Spectroscopy, University of Bremen , Bremen , Germany
AuthorAffiliation_xml – name: 6 Department for Physics and Astronomy, University of Bonn , Bonn , Germany
– name: 2 German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
– name: 7 Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg , Magdeburg , Germany
– name: 9 Center for Behavioral Brain Science , Magdeburg , Germany
– name: 1 German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany
– name: 8 Institute of Cognitive Neuroscience, University College London , London , United Kingdom
– name: 4 Fraunhofer Institute for Digital Medicine MEVIS , Bremen , Germany
– name: 5 MR-Imaging and Spectroscopy, University of Bremen , Bremen , Germany
– name: 3 Department of Epileptology, University of Bonn Medical Center , Bonn , Germany
Author_xml – sequence: 1
  givenname: Katja
  surname: Neumann
  fullname: Neumann, Katja
– sequence: 2
  givenname: Martin
  surname: Schidlowski
  fullname: Schidlowski, Martin
– sequence: 3
  givenname: Matthias
  surname: Günther
  fullname: Günther, Matthias
– sequence: 4
  givenname: Tony
  surname: Stöcker
  fullname: Stöcker, Tony
– sequence: 5
  givenname: Emrah
  surname: Düzel
  fullname: Düzel, Emrah
BookMark eNp9kU2P0zAQhi20iP2AH8AtRy4pduIkzgVpVRW6UiXQAhI3a2KPu165drEdpP573G2FWA6cPJqPZ97xe00ufPBIyFtGF20rxvfGW58WDW3YYmBMjOIFuWJ939S8a39c_BVfkuuUHintG8GbV-Sy5VyMfcuuSLhHZ2GyzuZDBV5X97iPQc_KnnPBVGvQsIOoq5VXQaOuviScdaiXwWfr5zCn6jZmjBZc9XVvfbWBqVD9tirxGsHlh0O1chqjO7wmLw24hG_O7w35_nH1bbmuN58_3S1vN7XivMl1j6CggYa3bGiN5kYBHVRrFFfcGK6mrut5KQk1qoai6o0WVCtDEUbDO93ekLsTVwd4lPtoywEHGcDKp0SIWwkxW-VQqlFMQvCJisIUPYoRyzLejaCQFTWF9eHE2s_TDrVCnyO4Z9DnFW8f5Db8kqJI5LwvgHdnQAw_Z0xZ7mxS6Bx4LL8nm26gjHHaDaWVnVpVDClFNH_WMCqPpssn0-XRdHkyvcwM_8womyHbcFRj3X8mfwO507bc
CitedBy_id crossref_primary_10_1016_j_diii_2024_01_006
crossref_primary_10_1002_ana_27061
crossref_primary_10_1002_jmri_28634
crossref_primary_10_1002_mrm_30091
crossref_primary_10_1016_j_neuroimage_2025_121426
crossref_primary_10_1111_sjos_12740
Cites_doi 10.1016/j.neuroimage.2008.12.027
10.3389/fnins.2021.627627
10.1152/physrev.1959.39.2.183
10.1038/jcbfm.2013.161
10.1007/s10334-014-0480-1
10.1002/jmri.22345
10.1177/0271678x17713434
10.1002/mrm.20023
10.1002/jmri.25367
10.1002/mrm.1910400303
10.1002/jmri.25834
10.1016/j.jcm.2016.02.012
10.1002/mrm.1910150117
10.1038/jcbfm.2014.81
10.1002/mrm.20580
10.1002/mrm.21790
10.1016/j.neuroimage.2021.117807
10.1109/tsp.2008.2005752
10.1016/j.neuroimage.2011.09.015
10.2307/2529310
10.1371/journal.pone.0164112
10.1016/j.neuroimage.2011.02.046
10.1002/hbm.24451
10.1073/pnas.89.1.212
10.1002/mrm.1910400308
10.1002/mrm.22320
10.1002/mrm.23286
10.1002/mrm.21420
10.1109/42.906424
10.1016/j.neuroimage.2004.07.051
10.1002/mrm.22641
10.1002/hbm.23732
10.1002/mrm.27226
10.1093/cercor/bhq224
10.1002/mrm.22256
10.1002/mrm.28839
10.1002/mrm.25197
10.1006/nimg.2002.1132
10.1097/01.rli.0000084890.57197.54
10.1002/jmri.27007
10.1177/0271678x16683690
10.1152/jappl.1954.6.12.731
10.1371/journal.pone.0183762
ContentType Journal Article
Copyright Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel.
Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel. 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel
Copyright_xml – notice: Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel.
– notice: Copyright © 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel. 2021 Neumann, Schidlowski, Günther, Stöcker and Düzel
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fnins.2021.711898
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_c98b884b0856486e89ea07459ace1442
PMC8417446
10_3389_fnins_2021_711898
GrantInformation_xml – fundername: Deutsches Zentrum für Neurodegenerative Erkrankungen
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c442t-6eaca2a243173fd4fca07c3fc4c4ff4cb55641738c9c20ec6fd80dcf0ea9f45d3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693064900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:51:50 EDT 2025
Tue Nov 04 01:54:37 EST 2025
Wed Oct 01 14:25:54 EDT 2025
Sat Nov 29 02:55:06 EST 2025
Tue Nov 18 20:51:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-6eaca2a243173fd4fca07c3fc4c4ff4cb55641738c9c20ec6fd80dcf0ea9f45d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Xingfeng Shao, University of Southern California, United States; Youngkyoo Jung, University of California, Davis, United States
Edited by: Bradley J. MacIntosh, Sunnybrook Research Institute (SRI), Canada
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
OpenAccessLink https://doaj.org/article/c98b884b0856486e89ea07459ace1442
PMID 34489631
PQID 2570114057
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c98b884b0856486e89ea07459ace1442
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8417446
proquest_miscellaneous_2570114057
crossref_primary_10_3389_fnins_2021_711898
crossref_citationtrail_10_3389_fnins_2021_711898
PublicationCentury 2000
PublicationDate 2021-08-19
PublicationDateYYYYMMDD 2021-08-19
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-19
  day: 19
PublicationDecade 2020
PublicationTitle Frontiers in neuroscience
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Alsop (B1) 2015; 73
Chappell (B5) 2009; 57
Vidorreta (B39) 2017; 12
Zhang (B45) 2001; 20
Chen (B7) 2011; 33
Juttukonda (B20) 2021; 230
Cohen (B8) 2020; 51
Zhang (B44) 2021; 86
Buxton (B3) 1998; 40
Wenn (B41) 1990; 13
Lu (B25) 2011; 21
Lassen (B23) 1959; 39
Weber (B40) 2003; 38
Groves (B13) 2009; 45
Jenkinson (B19) 2012; 62
Meier (B27) 1954; 6
Dolui (B11) 2017; 38
Guo (B16) 2018; 47
Shin (B34) 2007; 58
Williams (B42) 1992; 89
Chappell (B6) 2010; 63
Liu (B24) 2012; 68
Paling (B31) 2014; 34
Boland (B2) 2018; 80
Mutsaerts (B30) 2015; 28
Chappell (B4) 2011; 65
Mutsaerts (B29) 2017; 37
Parkes (B32) 2004; 51
Donahue (B12) 2014; 34
van Osch (B38) 2018; 38
Patenaude (B33) 2011; 56
Suo (B37) 2019; 40
Landis (B22) 1977; 33
Jann (B17) 2021; 15
Dai (B9) 2017; 45
Koo (B21) 2016; 15
Jenkinson (B18) 2002; 17
Ssali (B36) 2016; 11
Guenther (B14) 2007
Dai (B10) 2008; 60
Mugler (B28) 1990; 15
MacIntosh (B26) 2010; 63
Günther (B15) 2005; 54
Smith (B35) 2004; 23
Wong (B43) 1998; 40
References_xml – volume: 45
  start-page: 795
  year: 2009
  ident: B13
  article-title: Combined spatial and non-spatial prior for inference on MRI time-series.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.027
– volume: 15
  year: 2021
  ident: B17
  article-title: Evaluation of cerebral blood flow measured by 3D PCASL as biomarker of vascular cognitive impairment and dementia (VCID) in a cohort of elderly latinx subjects at risk of small vessel disease.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.627627
– volume: 39
  start-page: 183
  year: 1959
  ident: B23
  article-title: Cerebral blood flow and oxygen consumption in man.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1959.39.2.183
– volume: 34
  start-page: 34
  year: 2014
  ident: B31
  article-title: Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2013.161
– volume: 28
  start-page: 427
  year: 2015
  ident: B30
  article-title: Reproducibility of pharmacological ASL using sequences from different vendors: implications for multicenter drug studies.
  publication-title: Magma
  doi: 10.1007/s10334-014-0480-1
– volume: 33
  start-page: 940
  year: 2011
  ident: B7
  article-title: Test-retest reliability of arterial spin labeling with common labeling strategies.
  publication-title: J. Magn. Reson. Imaging.
  doi: 10.1002/jmri.22345
– volume: 38
  start-page: 1461
  year: 2018
  ident: B38
  article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678x17713434
– volume: 51
  start-page: 736
  year: 2004
  ident: B32
  article-title: Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20023
– volume: 45
  start-page: 472
  year: 2017
  ident: B9
  article-title: Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort.
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25367
– volume: 13
  start-page: 67
  year: 1990
  ident: B41
  article-title: Arterial tortuosity.
  publication-title: Australas Phys. Eng. Sci. Med.
– volume: 40
  start-page: 348
  year: 1998
  ident: B43
  article-title: A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910400303
– volume: 47
  start-page: 1119
  year: 2018
  ident: B16
  article-title: Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: a simulation and in vivo study.
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25834
– volume: 15
  start-page: 155
  year: 2016
  ident: B21
  article-title: Guideline of selecting and reporting intraclass correlation coefficients for reliability research.
  publication-title: J. Chiropr. Med.
  doi: 10.1016/j.jcm.2016.02.012
– volume: 15
  start-page: 152
  year: 1990
  ident: B28
  article-title: Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE).
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910150117
– volume: 34
  start-page: 1243
  year: 2014
  ident: B12
  article-title: Bolus arrival time and cerebral blood flow responses to hypercarbia.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.81
– volume: 54
  start-page: 491
  year: 2005
  ident: B15
  article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20580
– volume: 60
  start-page: 1488
  year: 2008
  ident: B10
  article-title: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21790
– volume: 230
  year: 2021
  ident: B20
  article-title: Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the human connectome project-aging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117807
– volume: 57
  start-page: 223
  year: 2009
  ident: B5
  article-title: Variational bayesian inference for a nonlinear forward model.
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/tsp.2008.2005752
– volume: 62
  start-page: 782
  year: 2012
  ident: B19
  article-title: FSL.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 33
  start-page: 159
  year: 1977
  ident: B22
  article-title: The measurement of observer agreement for categorical data.
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 11
  year: 2016
  ident: B36
  article-title: Mapping long-term functional changes in cerebral blood flow by arterial spin labeling.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164112
– volume: 56
  start-page: 907
  year: 2011
  ident: B33
  article-title: Bayesian model of shape and appearance for subcortical brain segmentation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 40
  start-page: 1317
  year: 2019
  ident: B37
  article-title: Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson’s disease.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24451
– volume: 89
  start-page: 212
  year: 1992
  ident: B42
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.1.212
– volume: 40
  start-page: 383
  year: 1998
  ident: B3
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910400308
– volume: 63
  start-page: 1357
  year: 2010
  ident: B6
  article-title: Separation of macrovascular signal in multi-inversion time arterial spin labelling MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22320
– volume: 68
  start-page: 912
  year: 2012
  ident: B24
  article-title: Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23286
– volume: 58
  start-page: 1232
  year: 2007
  ident: B34
  article-title: Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21420
– volume: 20
  start-page: 45
  year: 2001
  ident: B45
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 23
  start-page: S208
  year: 2004
  ident: B35
  article-title: Advances in functional and structural MR image analysis and implementation as FSL.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– year: 2007
  ident: B14
  article-title: Highly efficient accelerated acquisition of perfusion inflow series by cycled arterial spin labeling
  publication-title: Proceedings of the 15th Annual Meeting of ISMRM
– volume: 65
  start-page: 1173
  year: 2011
  ident: B4
  article-title: Partial volume correction of multiple inversion time arterial spin labeling MRI data.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22641
– volume: 38
  start-page: 5260
  year: 2017
  ident: B11
  article-title: Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23732
– volume: 80
  start-page: 2475
  year: 2018
  ident: B2
  article-title: Accelerated 3D-GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27226
– volume: 21
  start-page: 1426
  year: 2011
  ident: B25
  article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq224
– volume: 63
  start-page: 641
  year: 2010
  ident: B26
  article-title: Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22256
– volume: 86
  start-page: 2208
  year: 2021
  ident: B44
  article-title: Examination of optimized protocols for pCASL: sensitivity to macrovascular contamination, flow dispersion, and prolonged arterial transit time.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28839
– volume: 73
  start-page: 102
  year: 2015
  ident: B1
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25197
– volume: 17
  start-page: 825
  year: 2002
  ident: B18
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 38
  start-page: 712
  year: 2003
  ident: B40
  article-title: Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue.
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000084890.57197.54
– volume: 51
  start-page: 1846
  year: 2020
  ident: B8
  article-title: Longitudinal reproducibility of MR perfusion using 3D pseudocontinuous arterial spin labeling with hadamard-encoded multiple postlabeling delays.
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27007
– volume: 37
  start-page: 3184
  year: 2017
  ident: B29
  article-title: The spatial coefficient of variation in arterial spin labeling cerebral blood flow images.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678x16683690
– volume: 6
  start-page: 731
  year: 1954
  ident: B27
  article-title: On the theory of the indicator-dilution method for measurement of blood flow and volume.
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1954.6.12.731
– volume: 12
  year: 2017
  ident: B39
  article-title: Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183762
SSID ssj0062842
Score 2.3368096
Snippet The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI)...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 711898
SubjectTerms arterial spin labeling
cerebral blood flow
Neuroscience
pCASL
perfusion
reliability
reproducibility
Title Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly
URI https://www.proquest.com/docview/2570114057
https://pubmed.ncbi.nlm.nih.gov/PMC8417446
https://doaj.org/article/c98b884b0856486e89ea07459ace1442
Volume 15
WOSCitedRecordID wos000693064900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZt0kMvpW1aun0sKpQeCm78kG3pmJQNLTSL6QO2JyGNJWJI5JDdLey_74zsDfGlvfQijCUjeWY0mpFG3zD2TnoPYCMCQFEkoi0gsVUNSS5MhnNPOitsTDZRL5dytVLNnVRfFBM2wAMPhDsGJa2UwqJpUAlZOamcwWWvVAYcOgNR-6LVs3emBh2MnYh8OMNEF0wd-9AFwubOs481WtRKTlahCNY_sTCn8ZF3Fpyzx-zRaCnyk2GET9g9F56yo5OAXvLVjr_nMXYzboofsZ4iiwfE7R03oeVoV0co125813uOOsZcoTzwRaB77C1v1m7b9gnhU3Vh22_X1FcUSP79ugv8q7HxsjrH5-G20o4vKKn35e4Z-3m2-PHpczKmUkgAabRJKtSvJjc5mQuFb4UHJCIUHgQI7wXYEqmLVRIU5KmDyrcybcGnzigvyrZ4zg5CH9wLxguT-lZB5iDzlL5M-rI2Dt0SV0qorJuxdE9aDSPOOKW7uNTobxA3dOSGJm7ogRsz9uH2k-sBZONvjU-JX7cNCR87vkCp0aPU6H9JzYy93XNb43yiQxITHFJaU1Y_9BHRjJ2xeiIGkx6nNaG7iMjcEgmC_vXL_zHEV-wh_TXtX2fqNTvY3GzdG_YAfm-69c2c3a9Xcs4OTxfL5ts8Cj-W53lDZY3lYfPlvPn1B5syD4w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+and+Reproducibility+of+Hadamard+Encoded+Pseudo-Continuous+Arterial+Spin+Labeling+in+Healthy+Elderly&rft.jtitle=Frontiers+in+neuroscience&rft.au=Katja+Neumann&rft.au=Martin+Schidlowski&rft.au=Martin+Schidlowski&rft.au=Matthias+G%C3%BCnther&rft.date=2021-08-19&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=15&rft_id=info:doi/10.3389%2Ffnins.2021.711898&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c98b884b0856486e89ea07459ace1442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon