Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning m...
Saved in:
| Published in: | Signal processing Vol. 130; pp. 377 - 388 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2017
|
| Subjects: | |
| ISSN: | 0165-1684, 1872-7557 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!