A symmetric adaptive visibility graph classification method of orthogonal signals for automatic modulation classification
Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal...
Uloženo v:
| Vydáno v: | IET communications Ročník 17; číslo 10; s. 1208 - 1219 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Stevenage
John Wiley & Sons, Inc
01.06.2023
Wiley |
| Témata: | |
| ISSN: | 1751-8628, 1751-8636 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations.
A novel visibility graph classification method of radio modulated signal is proposed in this work, which consists of a Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) algorithm and an end‐to‐end framework of Orthogonal Signal Graph Classification Network (QSGCNet). Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed QSSAVG method in this paper outperforms the benchmark method in classification accuracy and is also more robust against channel fading and noise variations. |
|---|---|
| AbstractList | Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations. Abstract Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations. Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations. A novel visibility graph classification method of radio modulated signal is proposed in this work, which consists of a Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) algorithm and an end‐to‐end framework of Orthogonal Signal Graph Classification Network (QSGCNet). Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed QSSAVG method in this paper outperforms the benchmark method in classification accuracy and is also more robust against channel fading and noise variations. |
| Author | Yang, Jingjing Li, Wenting Bai, Haihai Huang, Ming |
| Author_xml | – sequence: 1 givenname: Haihai surname: Bai fullname: Bai, Haihai organization: Yunnan University – sequence: 2 givenname: Jingjing orcidid: 0000-0002-3414-0621 surname: Yang fullname: Yang, Jingjing organization: Yunnan University – sequence: 3 givenname: Ming orcidid: 0000-0002-9517-2125 surname: Huang fullname: Huang, Ming email: huangming@ynu.edu.cn organization: Yunnan University – sequence: 4 givenname: Wenting surname: Li fullname: Li, Wenting organization: Yunnan University |
| BookMark | eNp9kUtLAzEUhYNU8LnxFwTcCdW8ZpospfgoKG7qOmTyaFNmmprMVObfm3akoIire7l859ybnDMwWoe1BeAKo1uMmLjTTUduMSkRPwKneFLgMS9pOTr0hJ-As5RWCBVFydgp6O9h6pvGttFrqIzatH5r4dYnX_natz1cRLVZQl2rlLzzWrU-rGHml8HA4GCIuVuEtaph8otcEnQhQtW1ocmshk0wXT2ofppcgGOXcXv5Xc_B_PFhPn0ev7w9zab3L2PNGOFjiznhmjknSkMrYiivBCqcM0w4jRxxFeKUaaqpZaxCjlNiuRGaFgiTakLPwWywNUGt5Cb6RsVeBuXlfhDiQqqYD62tpCWj1Ewqhx1nipvKECsM1pxiQiiy2et68NrE8NHZ1MpV6OLu0ZIiQYjABRGZuhkoHUNK0brDVozkLiW5S0nuU8ow-gVr3-7_p43K139L8CD59LXt_zGX09d3Mmi-AO9_qTQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3600401 crossref_primary_10_1049_cmu2_12881 crossref_primary_10_1049_cmu2_70025 crossref_primary_10_1049_cmu2_12856 |
| Cites_doi | 10.1109/TCCN.2018.2835460 10.1109/TWC.2017.2704124 10.1109/LWC.2020.2999453 10.1109/TIA.2022.3167658 10.1109/DySPAN.2017.7920754 10.1049/ip-com:19960752 10.1109/TVT.2019.2951594 10.1007/978-3-319-44188-7_16 10.1109/26.664294 10.1109/LSP.2020.3044259 10.1109/TNNLS.2020.2979670 10.1109/JIOT.2020.2991052 10.1109/TVT.2018.2884767 10.1109/CVPR.2018.00935 10.1073/pnas.0709247105 10.7498/aps.61.030506 10.1109/TNN.2008.2005605 10.1109/TNSE.2022.3146836 10.1109/LCOMM.2020.3044755 10.1109/LCOMM.2009.12.091711 10.1109/ICEICT.2016.7879726 10.1109/ACCESS.2020.2971135 10.1109/AINA.2008.27 10.1109/ACCESS.2022.3143106 10.1049/iet-com.2019.1346 10.1109/TCCN.2021.3120997 10.1063/5.0048243 10.1109/ACCESS.2019.2942368 10.1103/PhysRevE.80.046103 10.1109/MIM.2015.7066677 10.1109/TCCN.2020.3023145 10.1109/JSTSP.2018.2797022 10.1049/iet-com.2013.1104 10.1109/MILCOM.2003.1290087 10.1109/TNNLS.2018.2850703 10.1109/MCAS.2008.931739 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W DOA |
| DOI | 10.1049/cmu2.12608 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8636 |
| EndPage | 1219 |
| ExternalDocumentID | oai_doaj_org_article_36433d7bf1f84a8dbd2e9d1c8312230e 10_1049_cmu2_12608 CMU212608 |
| Genre | article |
| GrantInformation_xml | – fundername: National Nature Science Foundation of China funderid: 61863035; 62261059; 61863037 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 2QL 4.4 4IJ 5GY 6IK 6OB 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH ZL0 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4428-e1828c4ff96d3b2d38b905ffd49fc0f2fb0834c3c3e44b0f832e8d9c35012b73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8628 |
| IngestDate | Fri Oct 03 12:51:16 EDT 2025 Wed Aug 13 09:48:05 EDT 2025 Wed Oct 29 21:17:38 EDT 2025 Tue Nov 18 22:20:42 EST 2025 Wed Jan 22 16:20:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4428-e1828c4ff96d3b2d38b905ffd49fc0f2fb0834c3c3e44b0f832e8d9c35012b73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3414-0621 0000-0002-9517-2125 |
| OpenAccessLink | https://doaj.org/article/36433d7bf1f84a8dbd2e9d1c8312230e |
| PQID | 3092291529 |
| PQPubID | 1936360 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_36433d7bf1f84a8dbd2e9d1c8312230e proquest_journals_3092291529 crossref_primary_10_1049_cmu2_12608 crossref_citationtrail_10_1049_cmu2_12608 wiley_primary_10_1049_cmu2_12608_CMU212608 |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET communications |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2012; 61 2019; 7 2021; 8 2015; 18 2009; 80 2010 2008 2020; 14 2008; 105 1996; 143 2020; 32 2021; 70 2018; 68 1998; 46 2020; 8 2020; 7 2009; 13 2018; 4 2022 2017; 16 2022; 9 2019; 69 2020; 9 2020; 28 2009; 9 2018 2017 2020; 25 2016 2018; 30 2015 2022; 10 2022; 32 2003; 1 2008; 20 2018; 12 2014; 8 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 Li C. (e_1_2_9_33_1) 2021; 70 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – year: 2018 article-title: Hierarchical graph representation learning with differentiable pooling – volume: 143 start-page: 259 issue: 5 year: 1996 end-page: 266 article-title: Procedure for automatic recognition of analogue and digital modulations publication-title: IEE Proc. Commun. – volume: 14 start-page: 3153 issue: 18 year: 2020 end-page: 3160 article-title: SDN‐enabled Cognitive Radio Network Architecture publication-title: IET Commun. – volume: 46 start-page: 431 issue: 4 year: 1998 end-page: 436 article-title: Algorithms for automatic modulation recognition of communication signals publication-title: IEEE Trans. Commun. – volume: 70 start-page: 1 year: 2021 end-page: 11 article-title: Fault diagnosis of rolling bearing based on WHVG and GCN publication-title: IEEE Trans. Instrum. Meas. – volume: 7 start-page: 21 issue: 1 year: 2020 end-page: 33 article-title: Automatic modulation classification based on deep residual networks with multimodal information publication-title: IEEE Trans. Cognit. Commun. Netw. – year: 2022 article-title: Accurate detection of bearing faults using difference visibility graph and bi‐directional long short‐term memory network classifier publication-title: IEEE Trans. Ind. Appl. – volume: 12 start-page: 168 issue: 1 year: 2018 end-page: 179 article-title: Over‐the‐air deep learning based radio signal classification publication-title: IEEE J. Sel. Top. Signal Process. – start-page: 883 year: 2008 end-page: 887 article-title: Signal classification based on spectral correlation analysis and SVM in cognitive radio – volume: 28 start-page: 91 year: 2020 end-page: 95 article-title: Multi‐function radar signal sorting based on complex network publication-title: IEEE Signal Process Lett. – volume: 13 start-page: 917 issue: 12 year: 2009 end-page: 919 article-title: Automatic modulation classification algorithm using higher‐order cumulants under real‐world channel conditions publication-title: IEEE Commun. Lett. – volume: 10 start-page: 8960 year: 2022 end-page: 8973 article-title: Maximum visibility: A novel approach for time series forecasting based on complex network theory publication-title: IEEE Access – volume: 8 start-page: 3308 issue: 18 year: 2014 end-page: 3317 article-title: Data clustering algorithm for channel segmentation in a radio monitoring system publication-title: IET Commun. – start-page: 1 year: 2017 end-page: 6 article-title: Deep architectures for modulation recognition – volume: 7 start-page: 7795 issue: 8 year: 2020 end-page: 7807 article-title: Automatic modulation classification using gated recurrent residual network publication-title: IEEE IoT J. – volume: 9 start-page: 27 issue: 2 year: 2009 end-page: 45 article-title: Automatic modulation classification for cognitive radios using cyclic feature detection publication-title: IEEE Circuits Syst. Mag. – volume: 9 start-page: 1629 issue: 10 year: 2020 end-page: 1632 article-title: A spatiotemporal multi‐channel learning framework for automatic modulation recognition publication-title: IEEE Wireless Commun. Lett. – volume: 30 start-page: 718 issue: 3 year: 2018 end-page: 727 article-title: Modulation classification based on signal constellation diagrams and deep learning publication-title: IEEE Trans. Neural Netw. Learn Syst. – volume: 8 start-page: 529 issue: 2 year: 2021 end-page: 541 article-title: SigNet: A novel deep learning framework for radio signal classification publication-title: IEEE Trans. Cogn. Commun. Netw. – volume: 20 start-page: 61 issue: 1 year: 2008 end-page: 80 article-title: The graph neural network model publication-title: IEEE Trans. Neural. Netw. – volume: 32 start-page: 604 issue: 2 year: 2020 end-page: 624 article-title: A survey of the usages of deep learning for natural language processing publication-title: IEEE Trans. Neural. Netw. Learn Syst. – start-page: 213 year: 2016 end-page: 226 article-title: Convolutional radio modulation recognition networks – volume: 7 start-page: 138890 year: 2019 end-page: 138903 article-title: Multi–dimensional wireless signal identification based on support vector machines publication-title: IEEE Access – volume: 25 start-page: 1206 issue: 4 year: 2020 end-page: 1210 article-title: A data preprocessing method for automatic modulation classification based on CNN publication-title: IEEE Commun. Lett. – volume: 16 start-page: 4984 issue: 8 year: 2017 end-page: 5000 article-title: Online hybrid likelihood based modulation classification using multiple sensors publication-title: IEEE Trans. Wireless Commun. – start-page: 402 year: 2016 end-page: 405 article-title: Research on modulation identification of digital signals based on deep learning – volume: 80 issue: 4 year: 2009 article-title: Horizontal visibility graphs: Exact results for random time series publication-title: Phys. Rev. E. – volume: 68 start-page: 938 issue: 1 year: 2018 end-page: 946 article-title: Blind detection: Advanced techniques for WiFi‐based drone surveillance publication-title: IEEE Trans. Veh. Technol. – volume: 8 start-page: 73451 year: 2020 end-page: 73456 article-title: A broadband planar spiral antenna design for electromagnetic signal monitoring publication-title: IEEE Access – volume: 4 start-page: 433 issue: 3 year: 2018 end-page: 445 article-title: Deep learning models for wireless signal classification with distributed low‐cost spectrum sensors publication-title: IEEE Trans. Cognit. Commun. Networking – volume: 61 issue: 3 year: 2012 article-title: Limited penetrable visibility graph for establishing complex network from time series publication-title: Acta Phys. Sin. – article-title: Radio machine learning dataset generation with gnu radio – volume: 9 start-page: 1516 issue: 3 year: 2022 end-page: 1526 article-title: AvgNet: Adaptive visibility graph neural network and its application in modulation classification publication-title: IEEE Trans. Network Sci. Eng. – start-page: 8971 year: 2018 end-page: 8980 article-title: High performance visual tracking with siamese region proposal network – volume: 69 start-page: 564 issue: 1 year: 2019 end-page: 577 article-title: Deep neural network for robust modulation classification under uncertain noise conditions publication-title: IEEE Trans. Veh. Technol. – volume: 18 start-page: 11 issue: 2 year: 2015 end-page: 18 article-title: Signal identification for emerging intelligent radios: Classical problems and new challenges publication-title: IEEE Instrum. Meas. Mag. – year: 2017 – volume: 32 issue: 1 year: 2022 article-title: CLPVG: Circular limited penetrable visibility graph as a new network model for time series publication-title: Chaos Interdiscip. J. Nonlinear Sci. – volume: 105 start-page: 4972 issue: 13 year: 2008 end-page: 4975 article-title: From time series to complex networks: The visibility graph publication-title: Proc. Natl. Acad. Sci. USA – year: 2015 – start-page: 807 year: 2010 end-page: 814 article-title: Rectified linear units improve restricted boltzmann machines – volume: 1 start-page: 112 year: 2003 end-page: 117 article-title: Higher‐order cyclic cumulants for high order modulation classification – ident: e_1_2_9_23_1 doi: 10.1109/TCCN.2018.2835460 – ident: e_1_2_9_42_1 – ident: e_1_2_9_6_1 doi: 10.1109/TWC.2017.2704124 – ident: e_1_2_9_25_1 doi: 10.1109/LWC.2020.2999453 – ident: e_1_2_9_36_1 doi: 10.1109/TIA.2022.3167658 – ident: e_1_2_9_22_1 doi: 10.1109/DySPAN.2017.7920754 – volume: 70 start-page: 1 year: 2021 ident: e_1_2_9_33_1 article-title: Fault diagnosis of rolling bearing based on WHVG and GCN publication-title: IEEE Trans. Instrum. Meas. – ident: e_1_2_9_11_1 doi: 10.1049/ip-com:19960752 – ident: e_1_2_9_24_1 doi: 10.1109/TVT.2019.2951594 – ident: e_1_2_9_17_1 – ident: e_1_2_9_20_1 doi: 10.1007/978-3-319-44188-7_16 – ident: e_1_2_9_10_1 doi: 10.1109/26.664294 – ident: e_1_2_9_34_1 doi: 10.1109/LSP.2020.3044259 – ident: e_1_2_9_19_1 doi: 10.1109/TNNLS.2020.2979670 – ident: e_1_2_9_39_1 doi: 10.1109/JIOT.2020.2991052 – ident: e_1_2_9_7_1 doi: 10.1109/TVT.2018.2884767 – ident: e_1_2_9_18_1 doi: 10.1109/CVPR.2018.00935 – ident: e_1_2_9_30_1 doi: 10.1073/pnas.0709247105 – ident: e_1_2_9_43_1 – ident: e_1_2_9_32_1 doi: 10.7498/aps.61.030506 – ident: e_1_2_9_29_1 doi: 10.1109/TNN.2008.2005605 – ident: e_1_2_9_38_1 doi: 10.1109/TNSE.2022.3146836 – ident: e_1_2_9_40_1 – ident: e_1_2_9_28_1 doi: 10.1109/LCOMM.2020.3044755 – ident: e_1_2_9_12_1 doi: 10.1109/LCOMM.2009.12.091711 – ident: e_1_2_9_15_1 doi: 10.1109/ICEICT.2016.7879726 – ident: e_1_2_9_5_1 doi: 10.1109/ACCESS.2020.2971135 – ident: e_1_2_9_16_1 doi: 10.1109/AINA.2008.27 – ident: e_1_2_9_35_1 doi: 10.1109/ACCESS.2022.3143106 – ident: e_1_2_9_2_1 doi: 10.1049/iet-com.2019.1346 – ident: e_1_2_9_27_1 doi: 10.1109/TCCN.2021.3120997 – ident: e_1_2_9_37_1 doi: 10.1063/5.0048243 – ident: e_1_2_9_14_1 doi: 10.1109/ACCESS.2019.2942368 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevE.80.046103 – ident: e_1_2_9_9_1 doi: 10.1109/MIM.2015.7066677 – ident: e_1_2_9_8_1 doi: 10.1109/TCCN.2020.3023145 – ident: e_1_2_9_41_1 – ident: e_1_2_9_21_1 doi: 10.1109/JSTSP.2018.2797022 – ident: e_1_2_9_4_1 doi: 10.1049/iet-com.2013.1104 – ident: e_1_2_9_13_1 doi: 10.1109/MILCOM.2003.1290087 – ident: e_1_2_9_26_1 doi: 10.1109/TNNLS.2018.2850703 – ident: e_1_2_9_3_1 doi: 10.1109/MCAS.2008.931739 |
| SSID | ssj0055644 |
| Score | 2.3576384 |
| Snippet | Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional... Abstract Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1208 |
| SubjectTerms | Accuracy Adaptive algorithms Adaptive sampling adaptive signal processing Adaptive visibility graph Algorithms Benchmarks Classification Communication Datasets Deep learning Fading Feature extraction Fourier transforms Graph neural networks Graph representations Hypothesis testing Mapping Modulation modulation classification neural nets Neural networks non‐Euclidean space orthogonal signals Quadratures Radio signals Sequences Signal classification Time series Visibility Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxUxFA1aXejCb_FpKwHdKMRmkryZZFVqsbjQIlilu5DkJqXge_N8H8L79-bmZfohpRt3wxBC4NzcezK5cw4hb8H7TNPHgrVOcaZCUswlA0wAl0E6o3QRq_75pTs60icn5lv94LaobZVDTiyJGvqA38h3JTdCmFxtzN7sN0PXKLxdrRYat8kdVEloSuve9yETj8dtMXPNFbJhmbnrQZ5Umd0wWYkPTSbz-kpBKrr9V8jmZcpaas7hw_9d7SPyoLJNur8Jj8fkVpw-IfcvaRA-Jet9ulhPJmisFagDN8P8R_GX89I2u6ZF0poGZNnYVlSQpBvjadonivc-_SnyeYq9IDmaaebB1K2WfVGDpZMeqkXYP5M8I8eHn44PPrPqx8CCyqcUFvNZRAeVkmlBegFSe8PHKYEyKfAkks98ToWMcVTK85STRdRgAt5dCt_J52Rr2k_jC0IFb32XVOQgggIhXWpayCc353mXIogReTdgYkPVKkfLjF-23JkrYxE_W_AbkTfnY2cbhY5rR31EaM9HoKp2edHPT23dpFZmeiah86lJWjkNHkQ00AQtm8yieByR7QFtW7f6wl5APSLvS7DcsAx78PWHKE8vb57rFbmHxvabprRtsrWcr-IOuRv-LM8W89clzP8CsD8H1Q priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxUxFD7U6sIufItXqwR0ozCaSXJnEnBTi8WFli6qdBfyLIL3TrmPwv33npOZubYigrgbhjNDmPPIl8nJ9wG8it4jTJ-KqnGKVypkVblsYiUil0E6o3Qhq_72uT0-1mdn5mQH3o9nYXp-iO0PN8qMUq8pwZ3vVUgQ1KITw2wt3tYIx_UNuFnXsqWYFupkrMPTaVOkXHF-rCvE7XokJ1Xm3a9nr01HhbX_GtS8CljLjHN09__Geg_uDEiTHfShcR920vwB7F3hH3wImwO23MxmJKoVmIvugmofo-PmpWV2wwqdNQuEsKmlqHiR9aLTrMuM9ny6c8LyjPpAMJIZYmDm1quuMMGyWRcHebDfXvIITo8-nh5-qgYthiooXKFUCdchOqicTROlF1Fqb_g056hMDjyL7BHLqYD-TUp5nrFQJB1NoH1L4Vv5GHbn3Tw9ASZ449usEo8iqCiky3UTcdXmPG9zimICr0eP2DDwlJNcxg9b9suVsfQ1bfmaE3i5tb3o2Tn-aPWBHLu1IEbtcqNbnNshQa1EaCZj63OdtXI6-iiSiXXQskYExdME9sewsEOaL63kRgiDEMhM4E0JgL8Mwx5--SrK1dN_MX4Gt0nivm9P24fd1WKdnsOtcLn6vly8KCH_E3myBfw priority: 102 providerName: Wiley-Blackwell |
| Title | A symmetric adaptive visibility graph classification method of orthogonal signals for automatic modulation classification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12608 https://www.proquest.com/docview/3092291529 https://doaj.org/article/36433d7bf1f84a8dbd2e9d1c8312230e |
| Volume | 17 |
| WOSCitedRecordID | wos000964135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8636 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5q64N9EOsPvFqPgL5UWJtNsrvJY1taLLTHYasWX0J-iuDdlt6dcP-9k-xeuYroiy9hWcISZiaZb8js9wG89dYiTK9YURtBC-GiKExUvmCecseNEjKTVX8-b0YjeX2txmtSX6knrKMH7gx3wDFlct_YWEYpjPTWs6B86SQvMbPRkE5f2qhVMdWdwVVVZxlXzI1lgZhdrohJhTpwkwV7XyKMl_dSUWbsvwcz18FqzjanT-BxDxPJYbe8HdgI06ewvUYe-AyWh2S2nEySIpYjxpubdHCR9K947nddksxFTVyCx6kfKLuAdIrRpI0kXdi03xIQJ6mJA8OQIIAlZjFvM40rmbS-1_b67SPP4er05Or4Q9ELKRROYHlRBCwipBMxqtpzyzyXVtEqRi9UdDSyaBGICYfOCUJYGnGXB-mVS5eOzDb8BWxO22l4CYTR2jZRBOqZE55xE8vaY8llLG1i8GwA-yuTateTjCetix86X3YLpZP5dTb_AN7czb3pqDX-OOsoeeZuRqLDzi8wSHQfJPpfQTKAvZVfdb9HZ5pTxZhC_KIG8C77-i_L0McXn1h-2v0fC3oFj5Jufddztgeb89tFeA0P3c_599ntEB4wMR7C1tHJaPxxmCN7mJpSL3EcV19x_HI2-gVK9_81 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8EYMFLAELEAKdWxPYi8QKoWqVacjJAbUnRW_qkqdyTAP0HwU_8i1k5QWoe66YBdFluUkx9fnxtfnALx0xiBN77OsqATNhA0iq4JyGXOUW14pIZNY9bdBORzKw0P1eQ1-dWdhYlllFxNToHa1jf_INzlVjClcbdT76fcsukbF3dXOQqOBxb5f_cSUbf5u7yN-31eM7Xwabe9mratAZgVy7cwjo5ZWhKAKxw1zXBpF-yE4oYKlgQWDrERYHKkXwtCAkPfSKRt34JgpOXZ7Ba4ii2AqVQp-6QJ_v18k71hckPMMEwXZqaEKtWnHS_Y2x9xBnlv_kk3AOW57liGnJW7n9n_2cu7ArZZLk60G_HdhzU_uwc0zCov3YbVF5qvxONqGWVK5ahqjO4kH6lNR8IokwW5iYw4Ri6YSTkljq03qQOKuVn0UsxUSK11wrhJk-aRaLuqkdUvGtWsN0P7q5AGMLuPRH8L6pJ74R0AYLUwZhKeOWeEYr0JeOMxLK0PL4B3rwesOAtq2SuzREOREp4oAoXSEi05w6cGL07bTRn_kn60-RCSdtoia4elGPTvSbQjSHMknd6UJeZCiks445pXLreQ5ckTqe7DRgUu3gWyu_yCrB28SNi8Yht4--MrS1eOL-3oO13dHBwM92BvuP4EbDIljU363AeuL2dI_hWv2x-J4PnuWZhgBfcmg_Q0hWmPE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBSFY8EYMFLAELEAK49hOYi8QKi0jqpbRLAqq2Fjxq0JiJsM8QPNp_B3XnqS0CHXXBbsosqw8ju89Nz65B-C5MwZpesGyshY0EzaIrA7KZcxRbnmthEzNqj8fVMOhPDpSow341f0LE2WVXUxMgdo1Nn4j73OqGFOYbVQ_tLKI0e7g7fR7Fh2k4k5rZ6exhsi-X_3E8m3-Zm8X3_ULxgbvD3c-ZK3DQGYF8u7MI7uWVoSgSscNc1waRYsQnFDB0sCCQYYiLF61F8LQgPD30ikbd-OYqThOewkuV1hiRjXhqPjSJYGiKJOPLCbnPMOiQXadUYXq2_GSvc6xjpBncmGyDDjDc0-z5ZTuBjf_4wd1C260HJtsrxfFbdjwkztw_VTnxbuw2ibz1Xgc7cQsqV09jVGfxB_tk1h4RVIjb2JjbRHFVAm_ZG23TZpA4m5XcxyrGBIVMLiGCbJ_Ui8XTeqBS8aNa43R_prkHhxexK3fh81JM_EPgDBamioITx2zwjFeh7x0WK_WhlbBO9aDlx0ctG07tEejkG86KQWE0hE6OkGnB89Oxk7XfUn-OepdRNXJiNhLPJ1oZse6DU2aIynlrjIhD1LU0hnHvHK5lTxH7kh9D7Y6oOk2wM31H5T14FXC6TmXoXc-fmLp6OH5cz2Fq4hVfbA33H8E1xjyybUqbws2F7OlfwxX7I_F1_nsSVpsBPQFY_Y39ZpsnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+symmetric+adaptive+visibility+graph+classification+method+of+orthogonal+signals+for+automatic+modulation+classification&rft.jtitle=IET+communications&rft.au=Haihai+Bai&rft.au=Jingjing+Yang&rft.au=Ming+Huang&rft.au=Wenting+Li&rft.date=2023-06-01&rft.pub=Wiley&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=17&rft.issue=10&rft.spage=1208&rft.epage=1219&rft_id=info:doi/10.1049%2Fcmu2.12608&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_36433d7bf1f84a8dbd2e9d1c8312230e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon |