A symmetric adaptive visibility graph classification method of orthogonal signals for automatic modulation classification

Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET communications Ročník 17; číslo 10; s. 1208 - 1219
Hlavní autoři: Bai, Haihai, Yang, Jingjing, Huang, Ming, Li, Wenting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage John Wiley & Sons, Inc 01.06.2023
Wiley
Témata:
ISSN:1751-8628, 1751-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations. A novel visibility graph classification method of radio modulated signal is proposed in this work, which consists of a Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) algorithm and an end‐to‐end framework of Orthogonal Signal Graph Classification Network (QSGCNet). Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed QSSAVG method in this paper outperforms the benchmark method in classification accuracy and is also more robust against channel fading and noise variations.
AbstractList Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations.
Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations. A novel visibility graph classification method of radio modulated signal is proposed in this work, which consists of a Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) algorithm and an end‐to‐end framework of Orthogonal Signal Graph Classification Network (QSGCNet). Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed QSSAVG method in this paper outperforms the benchmark method in classification accuracy and is also more robust against channel fading and noise variations.
Abstract Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations.
Author Yang, Jingjing
Li, Wenting
Bai, Haihai
Huang, Ming
Author_xml – sequence: 1
  givenname: Haihai
  surname: Bai
  fullname: Bai, Haihai
  organization: Yunnan University
– sequence: 2
  givenname: Jingjing
  orcidid: 0000-0002-3414-0621
  surname: Yang
  fullname: Yang, Jingjing
  organization: Yunnan University
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-9517-2125
  surname: Huang
  fullname: Huang, Ming
  email: huangming@ynu.edu.cn
  organization: Yunnan University
– sequence: 4
  givenname: Wenting
  surname: Li
  fullname: Li, Wenting
  organization: Yunnan University
BookMark eNp9kUtLAzEUhYNU8LnxFwTcCdW8ZpospfgoKG7qOmTyaFNmmprMVObfm3akoIire7l859ybnDMwWoe1BeAKo1uMmLjTTUduMSkRPwKneFLgMS9pOTr0hJ-As5RWCBVFydgp6O9h6pvGttFrqIzatH5r4dYnX_natz1cRLVZQl2rlLzzWrU-rGHml8HA4GCIuVuEtaph8otcEnQhQtW1ocmshk0wXT2ofppcgGOXcXv5Xc_B_PFhPn0ev7w9zab3L2PNGOFjiznhmjknSkMrYiivBCqcM0w4jRxxFeKUaaqpZaxCjlNiuRGaFgiTakLPwWywNUGt5Cb6RsVeBuXlfhDiQqqYD62tpCWj1Ewqhx1nipvKECsM1pxiQiiy2et68NrE8NHZ1MpV6OLu0ZIiQYjABRGZuhkoHUNK0brDVozkLiW5S0nuU8ow-gVr3-7_p43K139L8CD59LXt_zGX09d3Mmi-AO9_qTQ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3600401
crossref_primary_10_1049_cmu2_12881
crossref_primary_10_1049_cmu2_70025
crossref_primary_10_1049_cmu2_12856
Cites_doi 10.1109/TCCN.2018.2835460
10.1109/TWC.2017.2704124
10.1109/LWC.2020.2999453
10.1109/TIA.2022.3167658
10.1109/DySPAN.2017.7920754
10.1049/ip-com:19960752
10.1109/TVT.2019.2951594
10.1007/978-3-319-44188-7_16
10.1109/26.664294
10.1109/LSP.2020.3044259
10.1109/TNNLS.2020.2979670
10.1109/JIOT.2020.2991052
10.1109/TVT.2018.2884767
10.1109/CVPR.2018.00935
10.1073/pnas.0709247105
10.7498/aps.61.030506
10.1109/TNN.2008.2005605
10.1109/TNSE.2022.3146836
10.1109/LCOMM.2020.3044755
10.1109/LCOMM.2009.12.091711
10.1109/ICEICT.2016.7879726
10.1109/ACCESS.2020.2971135
10.1109/AINA.2008.27
10.1109/ACCESS.2022.3143106
10.1049/iet-com.2019.1346
10.1109/TCCN.2021.3120997
10.1063/5.0048243
10.1109/ACCESS.2019.2942368
10.1103/PhysRevE.80.046103
10.1109/MIM.2015.7066677
10.1109/TCCN.2020.3023145
10.1109/JSTSP.2018.2797022
10.1049/iet-com.2013.1104
10.1109/MILCOM.2003.1290087
10.1109/TNNLS.2018.2850703
10.1109/MCAS.2008.931739
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOA
DOI 10.1049/cmu2.12608
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (LUT)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 1219
ExternalDocumentID oai_doaj_org_article_36433d7bf1f84a8dbd2e9d1c8312230e
10_1049_cmu2_12608
CMU212608
Genre article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  funderid: 61863035; 62261059; 61863037
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
2QL
4.4
4IJ
5GY
6IK
6OB
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4428-e1828c4ff96d3b2d38b905ffd49fc0f2fb0834c3c3e44b0f832e8d9c35012b73
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Fri Oct 03 12:51:16 EDT 2025
Wed Aug 13 09:48:05 EDT 2025
Wed Oct 29 21:17:38 EDT 2025
Tue Nov 18 22:20:42 EST 2025
Wed Jan 22 16:20:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4428-e1828c4ff96d3b2d38b905ffd49fc0f2fb0834c3c3e44b0f832e8d9c35012b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3414-0621
0000-0002-9517-2125
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12608
PQID 3092291529
PQPubID 1936360
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_36433d7bf1f84a8dbd2e9d1c8312230e
proquest_journals_3092291529
crossref_primary_10_1049_cmu2_12608
crossref_citationtrail_10_1049_cmu2_12608
wiley_primary_10_1049_cmu2_12608_CMU212608
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET communications
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2012; 61
2019; 7
2021; 8
2015; 18
2009; 80
2010
2008
2020; 14
2008; 105
1996; 143
2020; 32
2021; 70
2018; 68
1998; 46
2020; 8
2020; 7
2009; 13
2018; 4
2022
2017; 16
2022; 9
2019; 69
2020; 9
2020; 28
2009; 9
2018
2017
2020; 25
2016
2018; 30
2015
2022; 10
2022; 32
2003; 1
2008; 20
2018; 12
2014; 8
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
Li C. (e_1_2_9_33_1) 2021; 70
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2018
  article-title: Hierarchical graph representation learning with differentiable pooling
– volume: 143
  start-page: 259
  issue: 5
  year: 1996
  end-page: 266
  article-title: Procedure for automatic recognition of analogue and digital modulations
  publication-title: IEE Proc. Commun.
– volume: 14
  start-page: 3153
  issue: 18
  year: 2020
  end-page: 3160
  article-title: SDN‐enabled Cognitive Radio Network Architecture
  publication-title: IET Commun.
– volume: 46
  start-page: 431
  issue: 4
  year: 1998
  end-page: 436
  article-title: Algorithms for automatic modulation recognition of communication signals
  publication-title: IEEE Trans. Commun.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Fault diagnosis of rolling bearing based on WHVG and GCN
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  start-page: 21
  issue: 1
  year: 2020
  end-page: 33
  article-title: Automatic modulation classification based on deep residual networks with multimodal information
  publication-title: IEEE Trans. Cognit. Commun. Netw.
– year: 2022
  article-title: Accurate detection of bearing faults using difference visibility graph and bi‐directional long short‐term memory network classifier
  publication-title: IEEE Trans. Ind. Appl.
– volume: 12
  start-page: 168
  issue: 1
  year: 2018
  end-page: 179
  article-title: Over‐the‐air deep learning based radio signal classification
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 883
  year: 2008
  end-page: 887
  article-title: Signal classification based on spectral correlation analysis and SVM in cognitive radio
– volume: 28
  start-page: 91
  year: 2020
  end-page: 95
  article-title: Multi‐function radar signal sorting based on complex network
  publication-title: IEEE Signal Process Lett.
– volume: 13
  start-page: 917
  issue: 12
  year: 2009
  end-page: 919
  article-title: Automatic modulation classification algorithm using higher‐order cumulants under real‐world channel conditions
  publication-title: IEEE Commun. Lett.
– volume: 10
  start-page: 8960
  year: 2022
  end-page: 8973
  article-title: Maximum visibility: A novel approach for time series forecasting based on complex network theory
  publication-title: IEEE Access
– volume: 8
  start-page: 3308
  issue: 18
  year: 2014
  end-page: 3317
  article-title: Data clustering algorithm for channel segmentation in a radio monitoring system
  publication-title: IET Commun.
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Deep architectures for modulation recognition
– volume: 7
  start-page: 7795
  issue: 8
  year: 2020
  end-page: 7807
  article-title: Automatic modulation classification using gated recurrent residual network
  publication-title: IEEE IoT J.
– volume: 9
  start-page: 27
  issue: 2
  year: 2009
  end-page: 45
  article-title: Automatic modulation classification for cognitive radios using cyclic feature detection
  publication-title: IEEE Circuits Syst. Mag.
– volume: 9
  start-page: 1629
  issue: 10
  year: 2020
  end-page: 1632
  article-title: A spatiotemporal multi‐channel learning framework for automatic modulation recognition
  publication-title: IEEE Wireless Commun. Lett.
– volume: 30
  start-page: 718
  issue: 3
  year: 2018
  end-page: 727
  article-title: Modulation classification based on signal constellation diagrams and deep learning
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– volume: 8
  start-page: 529
  issue: 2
  year: 2021
  end-page: 541
  article-title: SigNet: A novel deep learning framework for radio signal classification
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  end-page: 80
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural. Netw.
– volume: 32
  start-page: 604
  issue: 2
  year: 2020
  end-page: 624
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Trans. Neural. Netw. Learn Syst.
– start-page: 213
  year: 2016
  end-page: 226
  article-title: Convolutional radio modulation recognition networks
– volume: 7
  start-page: 138890
  year: 2019
  end-page: 138903
  article-title: Multi–dimensional wireless signal identification based on support vector machines
  publication-title: IEEE Access
– volume: 25
  start-page: 1206
  issue: 4
  year: 2020
  end-page: 1210
  article-title: A data preprocessing method for automatic modulation classification based on CNN
  publication-title: IEEE Commun. Lett.
– volume: 16
  start-page: 4984
  issue: 8
  year: 2017
  end-page: 5000
  article-title: Online hybrid likelihood based modulation classification using multiple sensors
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 402
  year: 2016
  end-page: 405
  article-title: Research on modulation identification of digital signals based on deep learning
– volume: 80
  issue: 4
  year: 2009
  article-title: Horizontal visibility graphs: Exact results for random time series
  publication-title: Phys. Rev. E.
– volume: 68
  start-page: 938
  issue: 1
  year: 2018
  end-page: 946
  article-title: Blind detection: Advanced techniques for WiFi‐based drone surveillance
  publication-title: IEEE Trans. Veh. Technol.
– volume: 8
  start-page: 73451
  year: 2020
  end-page: 73456
  article-title: A broadband planar spiral antenna design for electromagnetic signal monitoring
  publication-title: IEEE Access
– volume: 4
  start-page: 433
  issue: 3
  year: 2018
  end-page: 445
  article-title: Deep learning models for wireless signal classification with distributed low‐cost spectrum sensors
  publication-title: IEEE Trans. Cognit. Commun. Networking
– volume: 61
  issue: 3
  year: 2012
  article-title: Limited penetrable visibility graph for establishing complex network from time series
  publication-title: Acta Phys. Sin.
– article-title: Radio machine learning dataset generation with gnu radio
– volume: 9
  start-page: 1516
  issue: 3
  year: 2022
  end-page: 1526
  article-title: AvgNet: Adaptive visibility graph neural network and its application in modulation classification
  publication-title: IEEE Trans. Network Sci. Eng.
– start-page: 8971
  year: 2018
  end-page: 8980
  article-title: High performance visual tracking with siamese region proposal network
– volume: 69
  start-page: 564
  issue: 1
  year: 2019
  end-page: 577
  article-title: Deep neural network for robust modulation classification under uncertain noise conditions
  publication-title: IEEE Trans. Veh. Technol.
– volume: 18
  start-page: 11
  issue: 2
  year: 2015
  end-page: 18
  article-title: Signal identification for emerging intelligent radios: Classical problems and new challenges
  publication-title: IEEE Instrum. Meas. Mag.
– year: 2017
– volume: 32
  issue: 1
  year: 2022
  article-title: CLPVG: Circular limited penetrable visibility graph as a new network model for time series
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
– volume: 105
  start-page: 4972
  issue: 13
  year: 2008
  end-page: 4975
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2015
– start-page: 807
  year: 2010
  end-page: 814
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 1
  start-page: 112
  year: 2003
  end-page: 117
  article-title: Higher‐order cyclic cumulants for high order modulation classification
– ident: e_1_2_9_23_1
  doi: 10.1109/TCCN.2018.2835460
– ident: e_1_2_9_42_1
– ident: e_1_2_9_6_1
  doi: 10.1109/TWC.2017.2704124
– ident: e_1_2_9_25_1
  doi: 10.1109/LWC.2020.2999453
– ident: e_1_2_9_36_1
  doi: 10.1109/TIA.2022.3167658
– ident: e_1_2_9_22_1
  doi: 10.1109/DySPAN.2017.7920754
– volume: 70
  start-page: 1
  year: 2021
  ident: e_1_2_9_33_1
  article-title: Fault diagnosis of rolling bearing based on WHVG and GCN
  publication-title: IEEE Trans. Instrum. Meas.
– ident: e_1_2_9_11_1
  doi: 10.1049/ip-com:19960752
– ident: e_1_2_9_24_1
  doi: 10.1109/TVT.2019.2951594
– ident: e_1_2_9_17_1
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-319-44188-7_16
– ident: e_1_2_9_10_1
  doi: 10.1109/26.664294
– ident: e_1_2_9_34_1
  doi: 10.1109/LSP.2020.3044259
– ident: e_1_2_9_19_1
  doi: 10.1109/TNNLS.2020.2979670
– ident: e_1_2_9_39_1
  doi: 10.1109/JIOT.2020.2991052
– ident: e_1_2_9_7_1
  doi: 10.1109/TVT.2018.2884767
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2018.00935
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.0709247105
– ident: e_1_2_9_43_1
– ident: e_1_2_9_32_1
  doi: 10.7498/aps.61.030506
– ident: e_1_2_9_29_1
  doi: 10.1109/TNN.2008.2005605
– ident: e_1_2_9_38_1
  doi: 10.1109/TNSE.2022.3146836
– ident: e_1_2_9_40_1
– ident: e_1_2_9_28_1
  doi: 10.1109/LCOMM.2020.3044755
– ident: e_1_2_9_12_1
  doi: 10.1109/LCOMM.2009.12.091711
– ident: e_1_2_9_15_1
  doi: 10.1109/ICEICT.2016.7879726
– ident: e_1_2_9_5_1
  doi: 10.1109/ACCESS.2020.2971135
– ident: e_1_2_9_16_1
  doi: 10.1109/AINA.2008.27
– ident: e_1_2_9_35_1
  doi: 10.1109/ACCESS.2022.3143106
– ident: e_1_2_9_2_1
  doi: 10.1049/iet-com.2019.1346
– ident: e_1_2_9_27_1
  doi: 10.1109/TCCN.2021.3120997
– ident: e_1_2_9_37_1
  doi: 10.1063/5.0048243
– ident: e_1_2_9_14_1
  doi: 10.1109/ACCESS.2019.2942368
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevE.80.046103
– ident: e_1_2_9_9_1
  doi: 10.1109/MIM.2015.7066677
– ident: e_1_2_9_8_1
  doi: 10.1109/TCCN.2020.3023145
– ident: e_1_2_9_41_1
– ident: e_1_2_9_21_1
  doi: 10.1109/JSTSP.2018.2797022
– ident: e_1_2_9_4_1
  doi: 10.1049/iet-com.2013.1104
– ident: e_1_2_9_13_1
  doi: 10.1109/MILCOM.2003.1290087
– ident: e_1_2_9_26_1
  doi: 10.1109/TNNLS.2018.2850703
– ident: e_1_2_9_3_1
  doi: 10.1109/MCAS.2008.931739
SSID ssj0055644
Score 2.3577287
Snippet Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional...
Abstract Visibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1208
SubjectTerms Accuracy
Adaptive algorithms
Adaptive sampling
adaptive signal processing
Adaptive visibility graph
Algorithms
Benchmarks
Classification
Communication
Datasets
Deep learning
Fading
Feature extraction
Fourier transforms
Graph neural networks
Graph representations
Hypothesis testing
Mapping
Modulation
modulation classification
neural nets
Neural networks
non‐Euclidean space
orthogonal signals
Quadratures
Radio signals
Sequences
Signal classification
Time series
Visibility
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6CeEgOwWhC1pjQoBcDE6cfs1N9VIl4UPFggremnyGQ3RF3N7D_3qqeWVlDSC7ehqEZmnp-Tdd8H2MHDSThwOnKyMZXWmvMOa9yBcplNY5gYuHS-37RXl3B7a25XpP6opmwnh64N9yRwpapYuuzyKAdRB9lMlEEUAI7W52o-tatWR2m-hrcNOMi44q9UVSI2WFFTKrNUZgs5BeBMB6etKLC2P8EZq6D1dJtzrbY6wEm8uN-e2_YizTdZq_WyAN32PKYz5aTCSliBe6iu6PCxelf8TLvuuSFi5oHgsc0D1RcwHvFaN5lThc23Q8C4pyGODAMOQJY7hbzrtC48kkXB22vPz7ylt2cfb05Pa8GIYUqoPGhSniIgKBzNuOovIwKvKmbnNEPOdRZZo9ATAcVVNLa1xmzPEE0gS4dpW_VO7Yx7abpPeOxTTkKcEkBZb9AhwrvkwkRkZnzMGKHK5PaMJCMk9bFL1suu7WxZH5bzD9i-49r73pqjb-uOiHPPK4gOuzyAoPEDkFi_xckI7a38qsdcnRmVW2kNIhfzIh9Lr7-xzbs6eU3WZ52n2NDH9hL0q3vZ8722Mb8fpE-ss3we_5zdv-pxPIDJK_5qA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC40etCDb3E1SoNeFMZMP2a3-iQxGDxoEIySW9PPEHB31n0I--_t6u2JiUgu3oahaRq-6qpvumu-D-BVh5FbtKrRonONUirvOSdTg9ImOQ6oQ9HS-_5pcnSEJyf6Sz1wW9a2yiEnlkQdek9n5Huy1ULoXG30u_nPhlyj6Ha1WmhchxukksBL697XIRN33biYueYKyZvM3HGQJ1V6z0_X4i3PZB4vFaSi23-JbF6krKXmHN7939XegzuVbbL9bXjch2tx9gBuX9AgfAibfbbcTKdkrOWZDXZO-Y_RL-elbXbDiqQ188Syqa2oIMm2xtOsT4zuffpT4vOMekFyNLPMg5ldr_qiBsumfagWYX9N8giODz8cH3xsqh9D4zOG2MT8LYJepaTHQToRJDrddillOJNvk0gu8znlpZdRKdemnCwiBu3p7lK4iXwMO7N-Fp8AC5OYAkcbJVIS4TkuuHNR-5AJnnU4gtcDJsZXrXKyzPhhyp250obwMwW_Ebw8HzvfKnT8c9R7gvZ8BKlqlxf94tTUTWpkpmcyTFziCZXF4IKIOnCPkmcW1cYR7A5om7rVl-YP1CN4U4LlimWYg8_fRHl6evVcz-AWGdtvm9J2YWe1WMfncNP_Wp0tFy9KmP8GCGEHwA
  priority: 102
  providerName: ProQuest
Title A symmetric adaptive visibility graph classification method of orthogonal signals for automatic modulation classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12608
https://www.proquest.com/docview/3092291529
https://doaj.org/article/36433d7bf1f84a8dbd2e9d1c8312230e
Volume 17
WOSCitedRecordID wos000964135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (LUT)
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7U1gd9qNfi1roE9EVhdHKZnQR8aUuLgi6LVi2-hFyL4O6UvQj77z3JzKytiCC-DMOQGULOJd8kJ98H8KySgRppRKFYZQshBMac5bGQ3EQ-8lL5zKX3-V09HsvzczXZgtf9WZiWH2Kz4JYiI-frFODGtiokCGrRiG66Yi8pwnF5A3Yo5XXyaSYmfR6uqlGWcsX5kRaI22VPTirUq1_vXpuOMmv_Nah5FbDmGef0zv_19S7sdkiTHLaucQ-2wuw-3L7CP_gA1odksZ5Ok6iWI8aby5T7SDpunktm1yTTWROXEHYqKcpWJK3oNGkiSXs-zUXC8iTVgaAnE8TAxKyWTWaCJdPGd_Jgv33kIZydnpwdvyk6LYbCof1kEfA_RDoRoxp5bpnn0qqyihFNGV0ZWbSI5YTjjgchbBkxUQTplUv7lszWfA-2Z80sPALi6xA9lSZwmRIIRZ-g1gblPII7Y-UAnvcW0a7jKU9yGd913i8XSqfR1Hk0B_B00_ayZef4Y6ujZNhNi8SonR808wvdBajmCM24r22kUQojvfUsKE-d5BQRVBkGcNC7he7CfKF5qRhTCIHUAF5kB_hLN_Tx-08s3-3_S-PHcCtJ3LflaQewvZyvwhO46X4svy3mw-zyQ9g5OhlPPgzzisIw1a9-xOuk-orXL2_HPwHnGAt9
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1daxQxFL3UKlgf_C6uVg2oDwpjZ5LMbvIgUqulpdtFcJW-hXyWQndn3Y-W_VH-R28yM7UV6VsffBuGEDIzJzfnTm7OAXhdCl9ooXkmaWkyzjnOOcNCJpgOrOuEdElL70e_NxiIw0P5dQV-tWdhYlllGxNToHaVjf_IN1kuKZW42siPk59ZdI2Ku6uthUYNi32_PMOUbfZh7zN-3zeU7nwZbu9mjatAZnEkIvPIqIXlIciuY4Y6JozMyxBwUMHmgQaDrIRbZpnn3OQBIe-FkzbuwFHTY9jtDbiJLILKVCn4rQ38ZdlN3rG4IBcZJgqiVUPlctOOFvR9gbmDuLT-JZuAS9z2IkNOS9zOvf_s5dyHuw2XJls1-B_Aih8_hDsXFBYfwXKLzJajUbQNs0Q7PYnRncQD9akoeEmSYDexMYeIRVMJp6S21SZVIHFXqzqK2QqJlS44VwmyfKIX8ypp3ZJR5RoDtL86eQzD63j0dVgdV2P_BIjr-eAKoT0TMUQWiPrCGC-tQ_qqjejA2xYCyjZK7NEQ5ESligAuVYSLSnDpwKvztpNaf-SfrT5FJJ23iJrh6UY1PVJNCFIMySdzPROKILgWzjjqpSusYAVyxNx3YKMFl2oC2Uz9QVYH3iVsXjEMtX3wnaarp1f39RJu7w4P-qq_N9h_BmsUiWNdfrcBq_Ppwj-HW_Z0fjybvkgzjIC6ZtD-BjZNY68
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWClgCDiCFjR_Z2AeESsuKqmW1h4IqLlb8qpDYzbIP0P40_h1jJyktQr31wC2KLMtJvpn5Jh7PB_C8kJ5WshKZYoXJhBBoc4aHTPIq8IGTyqVeep8PytFIHh2p8Qb86s7CxLLKzicmR-1qG_-R93muGFMYbVQ_tGUR493h29n3LCpIxZ3WTk6jgci-X__E9G3xZm8Xv_ULxobvD3c-ZK3CQGZxVTLzyK6lFSGogeOGOS6NyosQcIHB5oEFgwxFWG65F8LkAeHvpVM27sYxU3Kc9hJcLjHFjNWE4-JLFwSKYpB0ZDE40wyTBtl1RhWqbycr9ppiHiHPxMIkGXCG555myyncDW_-xy_qFtxoOTbZboziNmz46R24fqrz4l1Yb5PFejKJcmKWVK6aRa9P4kH7VCy8JqmRN7Ext4jFVAm_pJHbJnUgcberPo5ZDIkVMGjDBNk_qVbLOvXAJZPatcJof01yDw4v4tHvw-a0nvoHQFzpg6Oy8lxG10nRGqgxXlmHtLYysgcvOzho23Zoj0Ih33SqFBBKR-joBJ0ePDsZO2v6kvxz1LuIqpMRsZd4ulHPj3XrmjRHUspdaQINUlTSGce8ctRKTpE75r4HWx3QdOvgFvoPynrwKuH0nGXonY-fWLp6eP5cT-EqYlUf7I32H8E1hnyyqcrbgs3lfOUfwxX7Y_l1MX-SjI2AvmDM_gYEaWyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+symmetric+adaptive+visibility+graph+classification+method+of+orthogonal+signals+for+automatic+modulation+classification&rft.jtitle=IET+communications&rft.au=Bai%2C+Haihai&rft.au=Yang%2C+Jingjing&rft.au=Huang%2C+Ming&rft.au=Li%2C+Wenting&rft.date=2023-06-01&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=17&rft.issue=10&rft.spage=1208&rft.epage=1219&rft_id=info:doi/10.1049%2Fcmu2.12608&rft.externalDBID=10.1049%252Fcmu2.12608&rft.externalDocID=CMU212608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon