Performance evaluation of Nakagami‐m fading with impulsive noise

The main motivation for considering noise to be Gaussian is the central limit theorem (CLT), which accounts for the perturbations that are additive in nature. However, a communication link may be severely affected due to the presence of potential non‐Gaussian sources of noise. This paper considers a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications Jg. 15; H. 3; S. 364 - 373
Hauptverfasser: Ashraf, Umer, Begh, Gh. Rasool
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.02.2021
Wiley
Schlagworte:
ISSN:1751-8628, 1751-8636
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main motivation for considering noise to be Gaussian is the central limit theorem (CLT), which accounts for the perturbations that are additive in nature. However, a communication link may be severely affected due to the presence of potential non‐Gaussian sources of noise. This paper considers an important class of non‐Gaussian noise known as symmetric alpha‐stable (SαS) noise. To this end, using binary phase‐shift keying (BPSK) modulation, the bit‐error rate (BER) performance of a communication link subjected to Nakagami‐m fading and SαS noise is investigated by employing three approaches: exact, asymptotic and approximate. A closed‐form expression for the probability of error over Nakagami‐m fading subjected to bi‐parameter Cauchy–Gaussian mixture noise (BCGM) model is obtained. The effect of fading parameter (m) and impulsive index (α) on the BER is analyzed for different settings. The derived results corroborate with Monte Carlo simulations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1751-8628
1751-8636
DOI:10.1049/cmu2.12065