On the solutions to Sylvester‐conjugate periodic matrix equations via iteration

The problem of solving a class of Sylvester‐conjugate periodic matrix equations is investigated in this paper. Utilising conjugate gradient method, an iterative algorithm is provided, from which a matrix sequence can be generated to approximate the unknown matrix of the equation to be solved. Theore...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 17; číslo 3; s. 307 - 317
Hlavní autoři: Zhang, Lei, Li, Pengxiang, Han, Mengqi, Zhang, Yanfeng, Chang, Rui, Zhang, Jinhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage John Wiley & Sons, Inc 01.02.2023
Wiley
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The problem of solving a class of Sylvester‐conjugate periodic matrix equations is investigated in this paper. Utilising conjugate gradient method, an iterative algorithm is provided, from which a matrix sequence can be generated to approximate the unknown matrix of the equation to be solved. Theoretical derivation proves that the proposed algorithm is convergent starting from any initial value, and simulation examples show the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1751-8644
1751-8652
DOI:10.1049/cth2.12312