A High-Birefringence Microfiber Sagnac-Interferometer Biosensor Based on the Vernier Effect

We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 18; H. 12; S. 4114
Hauptverfasser: Wang, Xue-Zhou, Wang, Qi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 23.11.2018
MDPI AG
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a high-sensitive Sagnac-interferometer biosensor based on theVernier effect (VE) with a high-birefringence microfiber. The sensitivity enhancement is achieved by utilizing two cascaded Sagnac interferometers. One of the two interference loops consists of a panda polarization-maintaining fiber as a filter, whilst the other is comprised of high-birefringent microfiber coated Graphene oxide (GO) as a sensing channel. We theoretically analyzed the sensitivity of the sensor and verified it with experiments. The results of the simulation show that the refractive index sensitivity is more than five times that of the fiber sensor based on a single Sagnac loop. The sensitivity of the refractive index in the experiments can reach 2429 nm/refractive index unit (RIU), which is basically in accordance with the simulation. We also use electrostatic adsorption to coat GO on the surface of the sensing channel. GO is employed to adsorb bovine serum albumin (BSA) molecules to achieve the desired detection results, which has good biocompatibility and large specific surface area. The sensitivity to detect BSA can reach 9.097 nm/(mg×mL−1).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s18124114