Accelerating multidimensional NMR and MRI experiments using iterated maps

[Display omitted] •An iterated maps algorithm is applied to sparsely-sampled time domain data.•Used to reconstruct spectra from noisy 2D NMR and 3D MRI of solids data.•High quality results achieved with sparse sampling approaching theoretical minimum.•We use the QUEST sampling schedule and discuss i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) Jg. 237; S. 100 - 109
Hauptverfasser: Frey, Merideth A., Sethna, Zachary M., Manley, Gregory A., Sengupta, Suvrajit, Zilm, Kurt W., Loria, J. Patrick, Barrett, Sean E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.12.2013
Schlagworte:
ISSN:1090-7807, 1096-0856, 1096-0856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •An iterated maps algorithm is applied to sparsely-sampled time domain data.•Used to reconstruct spectra from noisy 2D NMR and 3D MRI of solids data.•High quality results achieved with sparse sampling approaching theoretical minimum.•We use the QUEST sampling schedule and discuss its benefits for 2D NMR data.•FFT-based method is computationally fast, simple to implement, and robust. Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a ‘QUasi-Even Sampling, plus jiTter’ (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
AbstractList Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a ‘QUasi-Even Sampling, plus jiTter’ (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a aQUasi-Even Sampling, plus jiTtera (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a 'QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a 'QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
[Display omitted] •An iterated maps algorithm is applied to sparsely-sampled time domain data.•Used to reconstruct spectra from noisy 2D NMR and 3D MRI of solids data.•High quality results achieved with sparse sampling approaching theoretical minimum.•We use the QUEST sampling schedule and discuss its benefits for 2D NMR data.•FFT-based method is computationally fast, simple to implement, and robust. Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a ‘QUasi-Even Sampling, plus jiTter’ (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
Author Loria, J. Patrick
Barrett, Sean E.
Zilm, Kurt W.
Frey, Merideth A.
Sengupta, Suvrajit
Sethna, Zachary M.
Manley, Gregory A.
AuthorAffiliation c Department of Chemistry, Yale University, New Haven, CT 06511
a Department of Physics, Yale University, New Haven, CT 06511
b Department of Physics, Princeton University, Princeton, NJ 08540
d Department of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511
AuthorAffiliation_xml – name: d Department of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511
– name: a Department of Physics, Yale University, New Haven, CT 06511
– name: b Department of Physics, Princeton University, Princeton, NJ 08540
– name: c Department of Chemistry, Yale University, New Haven, CT 06511
Author_xml – sequence: 1
  givenname: Merideth A.
  surname: Frey
  fullname: Frey, Merideth A.
  organization: Department of Physics, Yale University, New Haven, CT 06511, United States
– sequence: 2
  givenname: Zachary M.
  surname: Sethna
  fullname: Sethna, Zachary M.
  organization: Department of Physics, Princeton University, Princeton, NJ 08540, United States
– sequence: 3
  givenname: Gregory A.
  surname: Manley
  fullname: Manley, Gregory A.
  organization: Department of Chemistry, Yale University, New Haven, CT 06511, United States
– sequence: 4
  givenname: Suvrajit
  surname: Sengupta
  fullname: Sengupta, Suvrajit
  organization: Department of Chemistry, Yale University, New Haven, CT 06511, United States
– sequence: 5
  givenname: Kurt W.
  surname: Zilm
  fullname: Zilm, Kurt W.
  organization: Department of Chemistry, Yale University, New Haven, CT 06511, United States
– sequence: 6
  givenname: J. Patrick
  surname: Loria
  fullname: Loria, J. Patrick
  organization: Department of Chemistry, Yale University, New Haven, CT 06511, United States
– sequence: 7
  givenname: Sean E.
  surname: Barrett
  fullname: Barrett, Sean E.
  email: sean.barrett@yale.edu
  organization: Department of Physics, Yale University, New Haven, CT 06511, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24184710$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaR7tD-imeNmN3StZ1oNCIYQ-BvKA0K6FRrqTarCtqWSH9t9X7qQh6SJdSXC_czj3nmNyMMYRCXlNoaFAxbttsx1Sw4C2DegGoHtGjihoUYPqxMGfP9RSgTwkxzlvASjtJLwgh4xTxSWFI7I6dQ57THYK4001zP0UfBhwzCGOtq8uL64rO_rq4npV4c8dpmU25WrOCx6mRYi-GuwuvyTPN7bP-OruPSHfPn38evalPr_6vDo7Pa8d53SqPVcWmBWd81JKoXWH6ForWt1tbMcoOqUKwqxd8zUTG-d11zmwDKyg2rL2hHzY--7m9YDelTzJ9mZXotn0y0QbzOPJGL6bm3hrOGuVpqoYvL0zSPHHjHkyQ8jlCL0dMc7ZUCGpYLpV4v8oF5xrKvkS683DWPd5_p66AHQPuBRzTri5RyiYpU6zNaVOs9RpQJtSZ9HIfzQuTKWquGwW-ieV7_dKLFXcBkwmu4CjQx8Susn4GJ5Q_waUl7pf
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108508
crossref_primary_10_1016_j_pnmrs_2019_09_003
crossref_primary_10_1007_s10858_023_00418_3
crossref_primary_10_1007_s10858_019_00262_4
crossref_primary_10_1007_s10858_019_00263_3
crossref_primary_10_1002_mrc_4284
crossref_primary_10_1007_s10858_015_9952_5
Cites_doi 10.1002/anie.201003329
10.1109/TIT.2005.862083
10.1007/s00041-008-9045-x
10.1016/j.jmr.2011.10.009
10.1002/cmr.a.20126
10.1016/j.pnmrs.2010.07.002
10.1364/AO.21.002758
10.1021/ja047919t
10.1016/j.jmr.2007.07.008
10.1021/ja908004w
10.1063/1.1719961
10.1016/j.pnmrs.2011.02.002
10.1021/jp3032786
10.1073/pnas.1117293109
10.1002/mrm.21391
10.1021/jp2081116
10.1016/j.str.2010.09.020
10.1016/j.jmb.2005.01.039
10.1002/mrm.22233
10.1073/pnas.252644399
10.1021/ja044497e
10.1021/ja807893k
10.1021/ja049968b
10.1073/pnas.0606359104
10.1021/jp075531p
10.1016/j.jmr.2011.01.017
10.1016/j.jmr.2012.08.001
10.1109/MSP.2007.914731
10.1039/C2CP40174F
10.1103/PhysRevE.78.036706
10.1364/JOSAA.20.000040
10.1002/cphc.201300277
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
2013 Elsevier Inc. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: 2013 Elsevier Inc. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
5PM
DOI 10.1016/j.jmr.2013.09.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-0856
EndPage 109
ExternalDocumentID PMC4238918
24184710
10_1016_j_jmr_2013_09_005
S1090780713002267
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: 1P30NS052519-01A1
– fundername: NINDS NIH HHS
  grantid: P30 NS052519
– fundername: NIGMS NIH HHS
  grantid: T32 GM008283
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZA5
ZCG
ZGI
ZXP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c441t-d48a02a65cd7776995eec3a6395fa521ec8848a2aab4b26fcd955c0a20a619a23
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328593800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1090-7807
1096-0856
IngestDate Tue Sep 30 16:56:39 EDT 2025
Wed Oct 01 13:40:40 EDT 2025
Sun Sep 28 09:56:11 EDT 2025
Mon Jul 21 06:06:59 EDT 2025
Sat Nov 29 03:25:06 EST 2025
Tue Nov 18 22:18:23 EST 2025
Fri Feb 23 02:24:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Iterative maps
Magnetic resonance imaging
Sparse sampling
Multi-dimensional nuclear magnetic resonance
Language English
License Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-d48a02a65cd7776995eec3a6395fa521ec8848a2aab4b26fcd955c0a20a619a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present Address: Department of Chemistry, University of California, Irvine, Irvine, CA 92697
Both authors contributed equally to this paper.
PMID 24184710
PQID 1464491742
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238918
proquest_miscellaneous_1671629386
proquest_miscellaneous_1464491742
pubmed_primary_24184710
crossref_primary_10_1016_j_jmr_2013_09_005
crossref_citationtrail_10_1016_j_jmr_2013_09_005
elsevier_sciencedirect_doi_10_1016_j_jmr_2013_09_005
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of magnetic resonance (1997)
PublicationTitleAlternate J Magn Reson
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lipchock, Loria (b0155) 2010; 18
Ernst, Bodenhausen, Wokaun (b0010) 1987
Fienup (b0125) 1982; 21
Frydman, Scherf, Lupulescu (b0150) 2002; 99
Kazimierczuk, Orekhov (b0060) 2012; 223
States, Haberkorn, Ruben (b0120) 1982; 48
Candes, Romberg, Tao (b0080) 2006; 52
Hoch, Stern (b0020) 1996
Mobli, Hoch (b0025) 2008; 32A
Lustig, Donoho, Pauly (b0070) 2007; 58
Kazimierczuk, Stanek, Zawadzka-Kazimierczuk, Kozminski (b0140) 2013
Hu, Lustig, Balakrishnan, Larson, Bok, Kurhanewicz, Nelson, Goga, Pauly, Vigneron (b0090) 2010; 63
Frey, Michaud, VanHouten, Insogna, Madri, Barrett (b0065) 2012; 109
Gravel, Elser (b0135) 2008; 78
Franks, Zhou, Wylie, Money, Graesser, Frericks, Sahota, Rienstra (b0170) 2005; 127
Hyberts, Takeuchi, Wagner (b0030) 2010; 132
Matsuki, Eddy, Griffin, Herzfeld (b0110) 2010; 49
Candes, Wakin, Boyd (b0085) 2008; 14
Paramasivam, Suiter, Hou, Sun, Palmer, Hoch, Rovnyak, Polenova (b0035) 2012; 116
Mobli, Maciejewski, Schuyler, Stern, Hoch (b0045) 2012; 14
Orekhov, Jaravine (b0040) 2011; 59
Kazimierczuk, Stanek, Zawadzka-Kazimierczuk, Kozminski (b0055) 2010; 57
Matsuki, Eddy, Herzfeld (b0105) 2009; 131
Elser (b0095) 2003; 20
Stanek, Augustyniak, Kozminski (b0050) 2012; 214
Ulrich, Kojetin, Bassler, Cavanagh, Loria (b0130) 2005; 347
Schmidt, Sperling, Gao, Wylie, Boettcher, Wilson, Rienstra (b0175) 2007; 111
Korzhnev, Kloiber, Kay (b0160) 2004; 126
Morcombe, Gaponenko, Byrd, Zilm KW (b0165) 2004; 126
Stern, Donoho, Hoch (b0015) 2007; 188
Candes, Wakin (b0075) 2008; 25
Shrot, Frydman (b0145) 2011; 209
Ernst, Anderson (b0005) 1966; 37
Matsuki, Konuma, Fujiwara, Sugase (b0115) 2011; 115
Elser, Thibault, Rankenburg (b0100) 2007; 104
Ernst (10.1016/j.jmr.2013.09.005_b0010) 1987
Schmidt (10.1016/j.jmr.2013.09.005_b0175) 2007; 111
Candes (10.1016/j.jmr.2013.09.005_b0075) 2008; 25
Frey (10.1016/j.jmr.2013.09.005_b0065) 2012; 109
States (10.1016/j.jmr.2013.09.005_b0120) 1982; 48
Elser (10.1016/j.jmr.2013.09.005_b0100) 2007; 104
Hyberts (10.1016/j.jmr.2013.09.005_b0030) 2010; 132
Franks (10.1016/j.jmr.2013.09.005_b0170) 2005; 127
Paramasivam (10.1016/j.jmr.2013.09.005_b0035) 2012; 116
Hu (10.1016/j.jmr.2013.09.005_b0090) 2010; 63
Matsuki (10.1016/j.jmr.2013.09.005_b0105) 2009; 131
Candes (10.1016/j.jmr.2013.09.005_b0085) 2008; 14
Hoch (10.1016/j.jmr.2013.09.005_b0020) 1996
Matsuki (10.1016/j.jmr.2013.09.005_b0110) 2010; 49
Shrot (10.1016/j.jmr.2013.09.005_b0145) 2011; 209
Korzhnev (10.1016/j.jmr.2013.09.005_b0160) 2004; 126
Matsuki (10.1016/j.jmr.2013.09.005_b0115) 2011; 115
Lipchock (10.1016/j.jmr.2013.09.005_b0155) 2010; 18
Mobli (10.1016/j.jmr.2013.09.005_b0045) 2012; 14
Stern (10.1016/j.jmr.2013.09.005_b0015) 2007; 188
Lustig (10.1016/j.jmr.2013.09.005_b0070) 2007; 58
Kazimierczuk (10.1016/j.jmr.2013.09.005_b0140) 2013
Morcombe (10.1016/j.jmr.2013.09.005_b0165) 2004; 126
Orekhov (10.1016/j.jmr.2013.09.005_b0040) 2011; 59
Frydman (10.1016/j.jmr.2013.09.005_b0150) 2002; 99
Elser (10.1016/j.jmr.2013.09.005_b0095) 2003; 20
Fienup (10.1016/j.jmr.2013.09.005_b0125) 1982; 21
Stanek (10.1016/j.jmr.2013.09.005_b0050) 2012; 214
Gravel (10.1016/j.jmr.2013.09.005_b0135) 2008; 78
Ernst (10.1016/j.jmr.2013.09.005_b0005) 1966; 37
Ulrich (10.1016/j.jmr.2013.09.005_b0130) 2005; 347
Kazimierczuk (10.1016/j.jmr.2013.09.005_b0060) 2012; 223
Mobli (10.1016/j.jmr.2013.09.005_b0025) 2008; 32A
Candes (10.1016/j.jmr.2013.09.005_b0080) 2006; 52
Kazimierczuk (10.1016/j.jmr.2013.09.005_b0055) 2010; 57
References_xml – volume: 99
  start-page: 15858
  year: 2002
  end-page: 15862
  ident: b0150
  article-title: The acquisition of multi-dimensional NMR spectra within a single scan
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 1996
  ident: b0020
  article-title: NMR Data Processing
– volume: 14
  start-page: 10835
  year: 2012
  end-page: 10843
  ident: b0045
  article-title: Sparse sampling methods in multidimensional NMR
  publication-title: Phys. Chem. Chem. Phys.
– volume: 127
  start-page: 12291
  year: 2005
  end-page: 12305
  ident: b0170
  article-title: Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1):
  publication-title: J. Am. Chem. Soc.
– volume: 188
  start-page: 295
  year: 2007
  end-page: 300
  ident: b0015
  article-title: NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction
  publication-title: J. Magn. Reson.
– volume: 59
  start-page: 271
  year: 2011
  end-page: 292
  ident: b0040
  article-title: Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
  publication-title: Prog. NMR Spectrosc.
– volume: 132
  start-page: 2145
  year: 2010
  end-page: 2147
  ident: b0030
  article-title: Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data
  publication-title: J. Am. Chem. Soc.
– year: 2013
  ident: b0140
  article-title: High-dimensional NMR spectra for structural studies of biomolecules
  publication-title: ChemPhysChem
– volume: 109
  start-page: 5190
  year: 2012
  end-page: 5195
  ident: b0065
  article-title: Phosphorus-31 MRI of hard and soft solids using quadratic echo line-narrowing
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: b0070
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
– volume: 78
  start-page: 036706
  year: 2008
  ident: b0135
  article-title: Divide and concur: a general approach to constraint satisfaction
  publication-title: Phys. Rev. E
– volume: 21
  start-page: 2758
  year: 1982
  end-page: 2769
  ident: b0125
  article-title: Phase retrieval algorithms: a comparison
  publication-title: Appl. Opt.
– volume: 25
  start-page: 21
  year: 2008
  end-page: 30
  ident: b0075
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Proc. Mag.
– year: 1987
  ident: b0010
  article-title: Principles of Nuclear Magnetic Resonance in One and Two Dimensions
– volume: 104
  start-page: 418
  year: 2007
  end-page: 423
  ident: b0100
  article-title: Search with iterated maps
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 40
  year: 2003
  end-page: 55
  ident: b0095
  article-title: Phase retrieval by iterated projections
  publication-title: J. Opt. Soc. Am. A
– volume: 116
  start-page: 7416
  year: 2012
  end-page: 7427
  ident: b0035
  article-title: Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies
  publication-title: J. Phys. Chem. B
– volume: 57
  start-page: 420
  year: 2010
  end-page: 434
  ident: b0055
  article-title: Random sampling in multidimensional NMR spectroscopy
  publication-title: Prog. NMR Spectrosc.
– volume: 126
  start-page: 7196
  year: 2004
  end-page: 7197
  ident: b0165
  article-title: Diluting abundant spins by isotope edited radio frequency field assisted diffusion
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 877
  year: 2008
  end-page: 905
  ident: b0085
  article-title: Enhancing sparsity by reweighted
  publication-title: J. Fourier Anal. Appl.
– volume: 37
  start-page: 93
  year: 1966
  end-page: 102
  ident: b0005
  article-title: Application of Fourier transform spectroscopy to magnetic resonance
  publication-title: Rev. Sci. Instrum.
– volume: 209
  start-page: 352
  year: 2011
  end-page: 358
  ident: b0145
  article-title: Compressed sensing and the reconstruction of ultrafast 2D NMR data: principles and biomolecular applications
  publication-title: J. Magn. Reson.
– volume: 111
  start-page: 14362
  year: 2007
  end-page: 14369
  ident: b0175
  article-title: Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction
  publication-title: J. Phys. Chem. B
– volume: 223
  start-page: 1
  year: 2012
  end-page: 10
  ident: b0060
  article-title: A comparison of convex and non-convex compressed sensing applied to multidimensional NMR
  publication-title: J. Magn. Reson.
– volume: 126
  start-page: 7320
  year: 2004
  end-page: 7329
  ident: b0160
  article-title: Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application
  publication-title: J. Am. Chem. Soc.
– volume: 347
  start-page: 297
  year: 2005
  end-page: 307
  ident: b0130
  article-title: Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing
  publication-title: J. Mol. Biol.
– volume: 48
  start-page: 286
  year: 1982
  end-page: 292
  ident: b0120
  article-title: A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants
  publication-title: J. Magn. Reson.
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  ident: b0080
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 32A
  start-page: 4361
  year: 2008
  end-page: 4378
  ident: b0025
  article-title: Maximum entropy spectral reconstruction of non-uniformly sampled data
  publication-title: Concept. Magn. Reson. Part A
– volume: 131
  start-page: 4648
  year: 2009
  end-page: 4656
  ident: b0105
  article-title: Spectroscopy by integration of frequency and time domain information (SIFT) for fast acquisition of high resolution dark spectra
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1596
  year: 2010
  end-page: 1607
  ident: b0155
  article-title: Nanometer propagation of millisecond motions in V-type allostery
  publication-title: Structure
– volume: 63
  start-page: 312
  year: 2010
  end-page: 321
  ident: b0090
  article-title: 3D compressed sensing for highly accelerated hyperpolarized (13)C MRSI with in vivo applications to transgenic mouse models of cancer
  publication-title: Magn. Reson. Med.
– volume: 115
  start-page: 13740
  year: 2011
  end-page: 13745
  ident: b0115
  article-title: Boosting protein dynamics studies using quantitative nonuniform sampling NMR spectroscopy
  publication-title: J. Phys. Chem. B
– volume: 49
  start-page: 9512
  year: 2010
  end-page: 9518
  ident: b0110
  article-title: Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 214
  start-page: 91
  year: 2012
  end-page: 102
  ident: b0050
  article-title: Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm
  publication-title: J. Magn. Reson.
– volume: 49
  start-page: 9512
  year: 2010
  ident: 10.1016/j.jmr.2013.09.005_b0110
  article-title: Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201003329
– volume: 52
  start-page: 489
  year: 2006
  ident: 10.1016/j.jmr.2013.09.005_b0080
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 14
  start-page: 877
  year: 2008
  ident: 10.1016/j.jmr.2013.09.005_b0085
  article-title: Enhancing sparsity by reweighted l1 minimization
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– volume: 214
  start-page: 91
  year: 2012
  ident: 10.1016/j.jmr.2013.09.005_b0050
  article-title: Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.10.009
– volume: 32A
  start-page: 4361
  year: 2008
  ident: 10.1016/j.jmr.2013.09.005_b0025
  article-title: Maximum entropy spectral reconstruction of non-uniformly sampled data
  publication-title: Concept. Magn. Reson. Part A
  doi: 10.1002/cmr.a.20126
– volume: 57
  start-page: 420
  year: 2010
  ident: 10.1016/j.jmr.2013.09.005_b0055
  article-title: Random sampling in multidimensional NMR spectroscopy
  publication-title: Prog. NMR Spectrosc.
  doi: 10.1016/j.pnmrs.2010.07.002
– volume: 21
  start-page: 2758
  year: 1982
  ident: 10.1016/j.jmr.2013.09.005_b0125
  article-title: Phase retrieval algorithms: a comparison
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.002758
– volume: 126
  start-page: 7196
  year: 2004
  ident: 10.1016/j.jmr.2013.09.005_b0165
  article-title: Diluting abundant spins by isotope edited radio frequency field assisted diffusion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047919t
– volume: 188
  start-page: 295
  year: 2007
  ident: 10.1016/j.jmr.2013.09.005_b0015
  article-title: NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.07.008
– volume: 132
  start-page: 2145
  year: 2010
  ident: 10.1016/j.jmr.2013.09.005_b0030
  article-title: Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908004w
– volume: 37
  start-page: 93
  year: 1966
  ident: 10.1016/j.jmr.2013.09.005_b0005
  article-title: Application of Fourier transform spectroscopy to magnetic resonance
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1719961
– volume: 59
  start-page: 271
  year: 2011
  ident: 10.1016/j.jmr.2013.09.005_b0040
  article-title: Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
  publication-title: Prog. NMR Spectrosc.
  doi: 10.1016/j.pnmrs.2011.02.002
– volume: 116
  start-page: 7416
  year: 2012
  ident: 10.1016/j.jmr.2013.09.005_b0035
  article-title: Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp3032786
– volume: 109
  start-page: 5190
  year: 2012
  ident: 10.1016/j.jmr.2013.09.005_b0065
  article-title: Phosphorus-31 MRI of hard and soft solids using quadratic echo line-narrowing
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117293109
– volume: 58
  start-page: 1182
  year: 2007
  ident: 10.1016/j.jmr.2013.09.005_b0070
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 115
  start-page: 13740
  year: 2011
  ident: 10.1016/j.jmr.2013.09.005_b0115
  article-title: Boosting protein dynamics studies using quantitative nonuniform sampling NMR spectroscopy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp2081116
– volume: 18
  start-page: 1596
  year: 2010
  ident: 10.1016/j.jmr.2013.09.005_b0155
  article-title: Nanometer propagation of millisecond motions in V-type allostery
  publication-title: Structure
  doi: 10.1016/j.str.2010.09.020
– volume: 347
  start-page: 297
  year: 2005
  ident: 10.1016/j.jmr.2013.09.005_b0130
  article-title: Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.01.039
– volume: 63
  start-page: 312
  year: 2010
  ident: 10.1016/j.jmr.2013.09.005_b0090
  article-title: 3D compressed sensing for highly accelerated hyperpolarized (13)C MRSI with in vivo applications to transgenic mouse models of cancer
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22233
– volume: 99
  start-page: 15858
  year: 2002
  ident: 10.1016/j.jmr.2013.09.005_b0150
  article-title: The acquisition of multi-dimensional NMR spectra within a single scan
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.252644399
– volume: 127
  start-page: 12291
  year: 2005
  ident: 10.1016/j.jmr.2013.09.005_b0170
  article-title: Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044497e
– volume: 131
  start-page: 4648
  year: 2009
  ident: 10.1016/j.jmr.2013.09.005_b0105
  article-title: Spectroscopy by integration of frequency and time domain information (SIFT) for fast acquisition of high resolution dark spectra
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807893k
– volume: 126
  start-page: 7320
  year: 2004
  ident: 10.1016/j.jmr.2013.09.005_b0160
  article-title: Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049968b
– volume: 104
  start-page: 418
  year: 2007
  ident: 10.1016/j.jmr.2013.09.005_b0100
  article-title: Search with iterated maps
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0606359104
– volume: 111
  start-page: 14362
  year: 2007
  ident: 10.1016/j.jmr.2013.09.005_b0175
  article-title: Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp075531p
– volume: 48
  start-page: 286
  year: 1982
  ident: 10.1016/j.jmr.2013.09.005_b0120
  article-title: A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants
  publication-title: J. Magn. Reson.
– year: 1996
  ident: 10.1016/j.jmr.2013.09.005_b0020
– volume: 209
  start-page: 352
  year: 2011
  ident: 10.1016/j.jmr.2013.09.005_b0145
  article-title: Compressed sensing and the reconstruction of ultrafast 2D NMR data: principles and biomolecular applications
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.01.017
– volume: 223
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmr.2013.09.005_b0060
  article-title: A comparison of convex and non-convex compressed sensing applied to multidimensional NMR
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.08.001
– volume: 25
  start-page: 21
  year: 2008
  ident: 10.1016/j.jmr.2013.09.005_b0075
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2007.914731
– volume: 14
  start-page: 10835
  year: 2012
  ident: 10.1016/j.jmr.2013.09.005_b0045
  article-title: Sparse sampling methods in multidimensional NMR
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP40174F
– volume: 78
  start-page: 036706
  year: 2008
  ident: 10.1016/j.jmr.2013.09.005_b0135
  article-title: Divide and concur: a general approach to constraint satisfaction
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.036706
– volume: 20
  start-page: 40
  year: 2003
  ident: 10.1016/j.jmr.2013.09.005_b0095
  article-title: Phase retrieval by iterated projections
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.20.000040
– year: 2013
  ident: 10.1016/j.jmr.2013.09.005_b0140
  article-title: High-dimensional NMR spectra for structural studies of biomolecules
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201300277
– year: 1987
  ident: 10.1016/j.jmr.2013.09.005_b0010
SSID ssj0011570
Score 2.1083915
Snippet [Display omitted] •An iterated maps algorithm is applied to sparsely-sampled time domain data.•Used to reconstruct spectra from noisy 2D NMR and 3D MRI of...
Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Algorithms
Amino Acids - chemistry
Aminohydrolases - chemistry
Image Processing, Computer-Assisted
Iterative maps
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Magnetic Resonance Spectroscopy - methods
Magnetic Resonance Spectroscopy - statistics & numerical data
Multi-dimensional nuclear magnetic resonance
Noise
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Projection
Sampling
Sparse sampling
Three dimensional
Title Accelerating multidimensional NMR and MRI experiments using iterated maps
URI https://dx.doi.org/10.1016/j.jmr.2013.09.005
https://www.ncbi.nlm.nih.gov/pubmed/24184710
https://www.proquest.com/docview/1464491742
https://www.proquest.com/docview/1671629386
https://pubmed.ncbi.nlm.nih.gov/PMC4238918
Volume 237
WOSCitedRecordID wos000328593800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCMatXKYgIR6YMjlX24_V1IqitqDRSRUvluO4pdWald40XvnlHMdOmnWsGg-8RK1rJ5bPV-c7x8efEXqfSOAgBGPXE54PDopKXKARsRuFnpckoRoGKhdx7ZBejw4G7Gut9rvYC7O-IFlGr67Y7L-aGsrA2Hrr7D-Yu7wpFMBnMDpcwexwvZPhG1LCq0QbNhuZfMFUK_gb9Y3jXvfM5FactSvq_ovjVR4zMBrLwEGnYra4hbdOxShTRvlZ03g9MWixJ8aqUYXW3ITCu_CAVOmVoTKUA9_MPrTvQm_5-rWJx3ZFZiPodudMtVU2Ws0M0_22Ws_FZLysBiy8oJL8YeZYrPOeaWQVsP9SZidm38jB2KnVyxVNb075JvowOZlMtbyrF-SytTjavN-KNf3eF94673R4vznof5j9dPXJY3qF3h7DsocOfBIxmBkPGu3m4HO5FuVFxGha2C4Wa-N5luDWU29jNze9l-0k3Aqr6T9Gj6xZnYaB0RNUU9khenBanAJ4iO7nKcJy8RS1q8BytoHlALAcAJYDwHIqwHJyYDkFsBwNrGfovNXsn35y7UEcrgS2vHTTkArsiziSKSEkZixSSgYCyG00FMD_lKQUqvhCJGHix0OZsiiSWPhYgH8u_OA52s8uM_USOYJ4TNJQpAR8hQTaeQlOFY2j1E8xSYZ1hIsB5NKq1OvDUi54kY444TDmXI85x4zDmNfRx7LJzEi07KocFlbhlmMa7sgBT7uavSssyMEAelFNZOpytdCucxgy8Ov9HXVirdPGAhrX0Qtj9bKnwKA1QcR1RK7hoayg9d-v_5KNf-Q68OAJUebRV3fo22v0cPNXfIP2l_OVeovuyfVyvJgfoT0yoEcW938Aa63Qqw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+multidimensional+NMR+and+MRI+experiments+using+iterated+maps&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Frey%2C+Merideth+A&rft.au=Sethna%2C+Zachary+M&rft.au=Manley%2C+Gregory+A&rft.au=Sengupta%2C+Suvrajit&rft.date=2013-12-01&rft.issn=1096-0856&rft.eissn=1096-0856&rft.volume=237&rft.spage=100&rft_id=info:doi/10.1016%2Fj.jmr.2013.09.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon