Histone post-translational modifications — cause and consequence of genome function
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-w...
Saved in:
| Published in: | Nature reviews. Genetics Vol. 23; no. 9; pp. 563 - 580 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.09.2022
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Histone post-translational modifications (PTMs) have been mainly regarded as instructing DNA-templated processes. In this Review, Gonzalo Millán-Zambrano and colleagues describe how histone PTMs both affect and are affected by these DNA processes and should be viewed as components of a complex genome-regulating network. |
|---|---|
| AbstractList | Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented. Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.Histone post-translational modifications (PTMs) have been mainly regarded as instructing DNA-templated processes. In this Review, Gonzalo Millán-Zambrano and colleagues describe how histone PTMs both affect and are affected by these DNA processes and should be viewed as components of a complex genome-regulating network. Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented. Histone post-translational modifications (PTMs) have been mainly regarded as instructing DNA-templated processes. In this Review, Gonzalo Millán-Zambrano and colleagues describe how histone PTMs both affect and are affected by these DNA processes and should be viewed as components of a complex genome-regulating network. Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented. |
| Author | Millán-Zambrano, Gonzalo Schneider, Robert Bannister, Andrew J. Burton, Adam |
| Author_xml | – sequence: 1 givenname: Gonzalo orcidid: 0000-0002-4530-6359 surname: Millán-Zambrano fullname: Millán-Zambrano, Gonzalo organization: Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Departamento de Genética, Facultad de Biología, Universidad de Sevilla – sequence: 2 givenname: Adam surname: Burton fullname: Burton, Adam organization: Institute of Epigenetics and Stem Cells, Helmholtz Center Munich – sequence: 3 givenname: Andrew J. surname: Bannister fullname: Bannister, Andrew J. email: a.bannister@gurdon.cam.ac.uk organization: Gurdon Institute and Department of Pathology, University of Cambridge – sequence: 4 givenname: Robert orcidid: 0000-0001-5303-0973 surname: Schneider fullname: Schneider, Robert email: robert.schneider@helmholtz-muenchen.de organization: Institute of Functional Epigenetics, Helmholtz Center Munich, Faculty of Biology, Ludwig Maximilian University (LMU) of Munich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35338361$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kbtOwzAUhi0EgrbwAgzIEgtLwLfY7ogQNwmJhc6Wa5-goMQucTKw8RA8IU-C20KROnSyz9H3n9s_RvshBkDolJJLSri-SoKWShaEsYIQIXWh9tCICkVzKMX-5l_KIzRO6Y0QKqnih-iIl5xrLukIzR7q1OeyeBFTX_SdDamxfR2DbXAbfV3VbhUm_P35hZ0dEmAbPHY5Be8DBAc4VvgVQmwBV0NwS_oYHVS2SXDy-07Q7O725eaheHq-f7y5fiqcELQvnGVzOnWOKdDae9ClY1NRSSEIlMpbNxdSTadCg_RVpebgwTurS0YVYXk3PkEX67qLLuZhUm_aOjloGhsgDsmwZSkiS6Uyer6FvsWhy2tmShHOOCVKZurslxrmLXiz6OrWdh_m72AZYGvAdTGlDqoNQolZumLWrpjsilm5Ypa99ZbI1f3qrPngdbNbytfSlPuEV-j-x96h-gEK06Hs |
| CitedBy_id | crossref_primary_10_1080_17501911_2024_2447811 crossref_primary_10_1038_s41467_025_57384_7 crossref_primary_10_1111_cns_14649 crossref_primary_10_1039_D5AN00357A crossref_primary_10_1038_s41420_024_02240_8 crossref_primary_10_3390_ijms252212136 crossref_primary_10_3389_fcell_2024_1535839 crossref_primary_10_3389_fcell_2025_1572405 crossref_primary_10_1016_j_ymeth_2023_07_010 crossref_primary_10_3390_ijms252010982 crossref_primary_10_1017_S0967199424000224 crossref_primary_10_1111_cns_70471 crossref_primary_10_1016_j_molcel_2025_02_016 crossref_primary_10_3390_cells13141189 crossref_primary_10_1038_s41392_025_02340_6 crossref_primary_10_1360_SSV_2025_0142 crossref_primary_10_1002_adhm_202402209 crossref_primary_10_1016_j_jare_2024_11_037 crossref_primary_10_1083_jcb_202303141 crossref_primary_10_1016_j_intimp_2024_113968 crossref_primary_10_1146_annurev_physchem_090722_010601 crossref_primary_10_1186_s12964_025_02327_4 crossref_primary_10_1002_med_22096 crossref_primary_10_1172_JCI184656 crossref_primary_10_1038_s41392_025_02220_z crossref_primary_10_1038_s42003_024_06579_7 crossref_primary_10_1080_10406638_2022_2080728 crossref_primary_10_1002_mco2_70226 crossref_primary_10_3389_fcell_2022_991980 crossref_primary_10_3390_ijms25147851 crossref_primary_10_1038_s41467_024_53717_0 crossref_primary_10_1093_jleuko_qiaf092 crossref_primary_10_7554_eLife_103953 crossref_primary_10_1016_j_gpb_2023_06_003 crossref_primary_10_1021_jacs_4c14136 crossref_primary_10_1093_nar_gkae1227 crossref_primary_10_1016_j_arr_2025_102788 crossref_primary_10_3390_cancers15154005 crossref_primary_10_1007_s00359_023_01673_3 crossref_primary_10_1038_s41467_023_36898_y crossref_primary_10_1136_jmg_2022_109085 crossref_primary_10_1111_tpj_70040 crossref_primary_10_1002_1873_3468_14981 crossref_primary_10_3390_molecules28073043 crossref_primary_10_1089_ars_2023_0253 crossref_primary_10_1080_17501911_2024_2387527 crossref_primary_10_1016_j_cbd_2025_101513 crossref_primary_10_1016_j_celrep_2024_115148 crossref_primary_10_3389_fcell_2024_1383200 crossref_primary_10_1016_j_tranon_2024_102166 crossref_primary_10_1016_j_tig_2025_01_003 crossref_primary_10_1186_s12929_025_01146_6 crossref_primary_10_3389_fimmu_2024_1495221 crossref_primary_10_1002_advs_202405352 crossref_primary_10_1016_j_dnarep_2024_103702 crossref_primary_10_1016_j_jia_2024_06_018 crossref_primary_10_1111_cas_16321 crossref_primary_10_3389_fgene_2023_1320185 crossref_primary_10_1038_s41398_023_02415_4 crossref_primary_10_1080_07391102_2022_2135600 crossref_primary_10_1186_s13059_024_03408_2 crossref_primary_10_1186_s13578_024_01265_x crossref_primary_10_1007_s42764_024_00135_7 crossref_primary_10_1186_s12967_024_05169_9 crossref_primary_10_1016_j_yexcr_2025_114648 crossref_primary_10_3390_biology14080917 crossref_primary_10_1093_plphys_kiae333 crossref_primary_10_1016_j_jare_2024_11_010 crossref_primary_10_1016_j_tcb_2023_07_011 crossref_primary_10_1038_s41392_024_02095_6 crossref_primary_10_1002_mco2_70369 crossref_primary_10_1002_cbic_202200468 crossref_primary_10_1080_17501911_2024_2377947 crossref_primary_10_1186_s12935_025_03797_9 crossref_primary_10_1016_j_canlet_2025_217972 crossref_primary_10_1016_j_bbcan_2024_189099 crossref_primary_10_1016_j_taap_2024_117216 crossref_primary_10_1038_s41467_024_55165_2 crossref_primary_10_1016_j_xgen_2025_100985 crossref_primary_10_1016_j_molmet_2025_102197 crossref_primary_10_3389_fcvm_2023_1184030 crossref_primary_10_1016_j_bbagrm_2023_194990 crossref_primary_10_1016_j_jot_2025_06_007 crossref_primary_10_3389_fimmu_2025_1531246 crossref_primary_10_1360_SSV_2025_0106 crossref_primary_10_1016_j_micres_2023_127552 crossref_primary_10_1016_j_bioorg_2024_107887 crossref_primary_10_1128_jvi_01695_23 crossref_primary_10_1016_j_bbcan_2023_188931 crossref_primary_10_1016_j_freeradbiomed_2024_04_237 crossref_primary_10_1039_D4RA05488A crossref_primary_10_3390_cancers16162843 crossref_primary_10_3389_fendo_2023_1229862 crossref_primary_10_1016_j_jbc_2023_105131 crossref_primary_10_1016_j_ymthe_2025_04_027 crossref_primary_10_1111_cns_14610 crossref_primary_10_1016_j_coph_2025_102505 crossref_primary_10_1038_s41390_024_03167_7 crossref_primary_10_1038_s41576_023_00664_z crossref_primary_10_1016_j_micres_2023_127440 crossref_primary_10_1038_s41392_024_02039_0 crossref_primary_10_1007_s10142_023_01219_5 crossref_primary_10_1007_s42764_023_00108_2 crossref_primary_10_1016_j_tcb_2024_08_005 crossref_primary_10_1016_j_bbcan_2025_189337 crossref_primary_10_1016_j_biopha_2023_115938 crossref_primary_10_1007_s10555_023_10089_z crossref_primary_10_3892_or_2025_8950 crossref_primary_10_1042_BST20230877 crossref_primary_10_3390_ijms232012698 crossref_primary_10_1002_prp2_1171 crossref_primary_10_1016_j_jbc_2024_107776 crossref_primary_10_1002_pmic_202300650 crossref_primary_10_1186_s11658_024_00662_x crossref_primary_10_1016_j_jmb_2024_168453 crossref_primary_10_1093_plphys_kiae024 crossref_primary_10_1016_j_drup_2024_101152 crossref_primary_10_1038_s41467_023_40843_4 crossref_primary_10_1038_s41392_024_01918_w crossref_primary_10_1016_j_molcel_2024_10_034 crossref_primary_10_1016_j_molcel_2024_10_035 crossref_primary_10_1186_s13059_024_03308_5 crossref_primary_10_1016_j_bbagrm_2023_194968 crossref_primary_10_1038_s41423_023_01109_7 crossref_primary_10_1007_s10815_024_03301_8 crossref_primary_10_3390_livers4040040 crossref_primary_10_1016_j_allmed_2025_100064 crossref_primary_10_1016_j_cellsig_2024_111502 crossref_primary_10_1080_10409238_2024_2318547 crossref_primary_10_1038_s41380_025_03056_3 crossref_primary_10_3390_ijms26083577 crossref_primary_10_1093_fqsafe_fyad052 crossref_primary_10_3390_cancers16050991 crossref_primary_10_3390_ijms24054820 crossref_primary_10_3390_ijms241612879 crossref_primary_10_1016_j_bbapap_2024_141017 crossref_primary_10_1007_s12016_024_09014_1 crossref_primary_10_1002_mco2_70322 crossref_primary_10_1007_s12013_024_01587_0 crossref_primary_10_1021_acs_biochem_4c00647 crossref_primary_10_1038_s12276_023_01145_3 crossref_primary_10_1016_j_bbcan_2025_189356 crossref_primary_10_1016_j_tcb_2024_03_003 crossref_primary_10_1161_HYPERTENSIONAHA_123_21755 crossref_primary_10_1016_j_microc_2025_114118 crossref_primary_10_1007_s12672_025_02920_6 crossref_primary_10_3389_fonc_2023_1264090 crossref_primary_10_5483_BMBRep_2024_0175 crossref_primary_10_1097_JN9_0000000000000048 crossref_primary_10_1186_s13059_024_03209_7 crossref_primary_10_1007_s44297_023_00003_y crossref_primary_10_3390_ijms26136371 crossref_primary_10_1038_s41467_024_53981_0 crossref_primary_10_3390_cancers16122164 crossref_primary_10_1016_j_gene_2024_148218 crossref_primary_10_1093_nar_gkaf816 crossref_primary_10_1093_burnst_tkae033 crossref_primary_10_3389_fgene_2023_1243395 crossref_primary_10_3389_fphar_2024_1523779 crossref_primary_10_3390_genes16010045 crossref_primary_10_1016_j_canlet_2023_216128 crossref_primary_10_1186_s12870_024_05318_8 crossref_primary_10_3390_ijms25116168 crossref_primary_10_1002_pmic_202400238 crossref_primary_10_1111_imr_13317 crossref_primary_10_1186_s13046_024_03021_y crossref_primary_10_1093_nar_gkae1053 crossref_primary_10_1016_j_pharmthera_2024_108732 crossref_primary_10_3390_cells12101357 crossref_primary_10_1016_j_ymgme_2024_108540 crossref_primary_10_1002_mco2_173 crossref_primary_10_1089_ars_2023_0524 crossref_primary_10_3389_fcell_2024_1331074 crossref_primary_10_1016_j_molcel_2024_02_002 crossref_primary_10_1111_jfb_70203 crossref_primary_10_1097_HCO_0000000000001150 crossref_primary_10_1111_nph_19357 crossref_primary_10_1631_jzus_B2400032 crossref_primary_10_1091_mbc_E23_04_0147 crossref_primary_10_3390_ijms252111384 crossref_primary_10_1038_s41392_023_01655_6 crossref_primary_10_1186_s13578_023_00996_7 crossref_primary_10_3389_freae_2023_1195690 crossref_primary_10_3390_ijms26062405 crossref_primary_10_1016_j_lfs_2023_122383 crossref_primary_10_1038_s41392_025_02163_5 crossref_primary_10_1093_g3journal_jkad021 crossref_primary_10_1016_j_tcb_2025_02_010 crossref_primary_10_1016_j_bbagrm_2024_195021 crossref_primary_10_1101_gad_351444_123 crossref_primary_10_1210_endocr_bqae055 crossref_primary_10_1038_s44318_024_00212_3 crossref_primary_10_3389_fgene_2022_1027726 crossref_primary_10_1080_17501911_2025_2548758 crossref_primary_10_3390_biology12040567 crossref_primary_10_1002_wcms_1728 crossref_primary_10_1016_j_biocel_2025_106739 crossref_primary_10_1158_1541_7786_MCR_24_0744 crossref_primary_10_3390_epigenomes8030036 crossref_primary_10_1016_j_neuron_2024_11_006 crossref_primary_10_1080_19491034_2025_2516909 crossref_primary_10_1038_s41467_025_61586_4 crossref_primary_10_3390_biology12040561 crossref_primary_10_1016_j_trecan_2024_08_004 crossref_primary_10_1016_j_ecoenv_2025_118193 crossref_primary_10_3389_fcell_2022_1115903 crossref_primary_10_1016_j_bbcan_2024_189240 crossref_primary_10_1016_j_jbc_2023_104938 crossref_primary_10_1016_j_ejmech_2023_116057 crossref_primary_10_3389_fnmol_2024_1456052 crossref_primary_10_1007_s11010_025_05366_0 crossref_primary_10_1038_s44277_025_00041_0 crossref_primary_10_1002_em_22626 crossref_primary_10_1007_s11427_024_2676_y crossref_primary_10_1016_j_ymthe_2024_08_001 crossref_primary_10_3389_fonc_2025_1557162 crossref_primary_10_1038_s44319_025_00497_3 crossref_primary_10_1007_s13237_025_00542_5 crossref_primary_10_1084_jem_20240829 crossref_primary_10_1093_genetics_iyad196 crossref_primary_10_1007_s00018_024_05206_2 crossref_primary_10_1016_j_ejmech_2024_116884 crossref_primary_10_3389_fcvm_2024_1355980 crossref_primary_10_1186_s12967_025_06856_x crossref_primary_10_17533_udea_iatreia_330 crossref_primary_10_1016_j_exphem_2025_104858 crossref_primary_10_3389_fonc_2025_1549477 crossref_primary_10_1016_j_cmet_2024_11_005 crossref_primary_10_1016_j_jare_2025_07_003 crossref_primary_10_1073_pnas_2401861121 crossref_primary_10_1016_j_fochms_2025_100294 crossref_primary_10_3389_fendo_2023_1133970 crossref_primary_10_1186_s13072_024_00526_w crossref_primary_10_1371_journal_pcbi_1012755 crossref_primary_10_1080_14787210_2024_2420329 crossref_primary_10_1242_dev_201989 crossref_primary_10_1186_s43094_023_00573_2 crossref_primary_10_3389_fimmu_2024_1523034 crossref_primary_10_1016_j_cej_2022_141020 crossref_primary_10_1016_j_prp_2023_154850 crossref_primary_10_3390_proteomes13020022 crossref_primary_10_3389_fgene_2025_1553406 crossref_primary_10_1186_s13046_023_02789_9 crossref_primary_10_20517_cdr_2025_69 crossref_primary_10_3389_fmicb_2024_1484455 crossref_primary_10_1016_j_isci_2025_112092 crossref_primary_10_1038_s41586_024_08371_3 crossref_primary_10_1073_pnas_2413346122 crossref_primary_10_1210_endrev_bnad020 crossref_primary_10_1016_j_cytogfr_2023_08_002 crossref_primary_10_1186_s13148_024_01762_3 crossref_primary_10_1007_s13402_024_00976_0 crossref_primary_10_1016_j_jri_2024_104311 crossref_primary_10_1016_j_tips_2025_05_011 crossref_primary_10_1038_s44324_024_00047_w crossref_primary_10_1016_j_chroma_2024_465368 crossref_primary_10_1186_s12864_024_10602_w crossref_primary_10_1016_j_cell_2023_01_007 crossref_primary_10_1016_j_scib_2025_09_013 crossref_primary_10_1093_nar_gkae504 crossref_primary_10_1042_CS20242737 crossref_primary_10_1021_acs_jcim_5c00498 crossref_primary_10_1093_icb_icaf040 crossref_primary_10_1038_s42003_025_08207_4 crossref_primary_10_3390_toxics11010072 crossref_primary_10_17816_MAJ632018 crossref_primary_10_1038_s41392_022_01055_2 crossref_primary_10_1016_j_critrevonc_2024_104573 crossref_primary_10_1186_s13148_024_01773_0 crossref_primary_10_1371_journal_pone_0313255 crossref_primary_10_1016_j_neuroscience_2025_03_058 crossref_primary_10_1016_j_sbi_2024_102865 crossref_primary_10_1038_s41598_025_85766_w crossref_primary_10_1038_s41392_025_02266_z crossref_primary_10_1093_genetics_iyae138 crossref_primary_10_1093_narmme_ugaf026 crossref_primary_10_3389_fnmol_2024_1405415 crossref_primary_10_1002_1873_3468_14847 crossref_primary_10_1080_14728222_2024_2375372 crossref_primary_10_1016_j_neuron_2025_06_016 crossref_primary_10_1186_s13045_024_01545_6 crossref_primary_10_1016_j_canlet_2025_217804 crossref_primary_10_1038_s42003_024_07211_4 crossref_primary_10_1289_EHP12956 crossref_primary_10_1016_j_tig_2025_07_012 crossref_primary_10_1016_j_bbadis_2024_167247 crossref_primary_10_1016_j_bbadis_2025_167664 crossref_primary_10_1007_s00018_024_05209_z crossref_primary_10_1016_j_plantsci_2023_111920 crossref_primary_10_1007_s00299_024_03153_7 crossref_primary_10_3390_ijms25137073 crossref_primary_10_1007_s42994_025_00223_6 crossref_primary_10_1016_j_tibs_2023_08_003 crossref_primary_10_1093_nar_gkae1161 crossref_primary_10_1016_j_phrs_2024_107247 crossref_primary_10_3390_ijms25105424 crossref_primary_10_1002_ardp_202400437 crossref_primary_10_1093_nar_gkaf899 crossref_primary_10_3748_wjg_v29_i41_5618 crossref_primary_10_1126_sciadv_adu3308 crossref_primary_10_1007_s12032_023_02058_x crossref_primary_10_1093_jxb_erae474 crossref_primary_10_1016_j_trac_2024_117658 crossref_primary_10_3390_antiox12081520 crossref_primary_10_1016_j_bmcl_2024_129759 crossref_primary_10_1007_s10555_023_10114_1 crossref_primary_10_1016_j_jneumeth_2025_110550 crossref_primary_10_1007_s40726_023_00278_3 crossref_primary_10_3389_fcell_2025_1598232 crossref_primary_10_1007_s42994_025_00237_0 crossref_primary_10_1093_biolre_ioae011 crossref_primary_10_3390_cancers17060949 crossref_primary_10_1016_j_chembiol_2024_07_007 crossref_primary_10_1093_femsre_fuaf045 crossref_primary_10_1073_pnas_2213363120 crossref_primary_10_1016_j_algal_2025_104142 crossref_primary_10_1016_j_nantod_2024_102251 crossref_primary_10_1016_j_tig_2025_04_009 crossref_primary_10_1016_j_it_2023_09_005 crossref_primary_10_3389_fimmu_2022_908174 crossref_primary_10_1016_j_jmb_2024_168845 crossref_primary_10_1042_BST20210567 crossref_primary_10_1038_s41467_025_60735_z crossref_primary_10_1146_annurev_cancerbio_062722_021823 crossref_primary_10_2147_CMAR_S424422 crossref_primary_10_1016_j_mocell_2024_100137 crossref_primary_10_1186_s11658_025_00773_z crossref_primary_10_1007_s43440_025_00770_1 crossref_primary_10_1002_mco2_331 crossref_primary_10_3390_cells13161367 crossref_primary_10_1016_j_isci_2025_112699 crossref_primary_10_1158_2159_8290_CD_24_0296 crossref_primary_10_1016_j_cellin_2023_100128 crossref_primary_10_1038_s41586_024_07141_5 crossref_primary_10_1093_procel_pwaf010 crossref_primary_10_1002_advs_202307216 crossref_primary_10_1016_j_jpha_2022_11_003 crossref_primary_10_1016_j_tibs_2024_10_005 crossref_primary_10_1002_mco2_329 crossref_primary_10_3389_fonc_2025_1569651 crossref_primary_10_1093_nar_gkaf643 crossref_primary_10_3390_biom13030558 crossref_primary_10_1016_j_aca_2024_342513 crossref_primary_10_1016_j_stress_2025_101016 crossref_primary_10_1016_j_biopha_2023_114474 crossref_primary_10_1016_j_cell_2022_06_052 crossref_primary_10_1080_15592294_2023_2293411 crossref_primary_10_15252_msb_202211392 crossref_primary_10_1167_iovs_65_2_27 crossref_primary_10_1002_jcb_30535 crossref_primary_10_1016_j_biosystems_2024_105272 crossref_primary_10_1038_s41392_024_01812_5 crossref_primary_10_3390_ijms26073075 crossref_primary_10_1093_nar_gkaf897 crossref_primary_10_1016_j_ijbiomac_2025_146910 crossref_primary_10_1038_s41467_024_51785_w crossref_primary_10_1016_j_apsb_2025_07_019 crossref_primary_10_1002_mco2_261 crossref_primary_10_1016_j_bbadis_2024_167652 crossref_primary_10_1007_s10565_025_09995_5 crossref_primary_10_1016_j_jot_2025_08_013 crossref_primary_10_3389_fcell_2025_1621380 crossref_primary_10_3390_jdb10030028 crossref_primary_10_1007_s00418_024_02296_8 crossref_primary_10_1080_23748834_2024_2335707 crossref_primary_10_1016_j_arr_2024_102616 crossref_primary_10_1093_nar_gkad1172 crossref_primary_10_3389_fgeed_2024_1304110 crossref_primary_10_3390_pathogens13121080 crossref_primary_10_3390_epigenomes6030022 crossref_primary_10_1016_j_neuro_2023_05_004 crossref_primary_10_1080_00207454_2023_2276656 crossref_primary_10_1093_gpbjnl_qzaf029 crossref_primary_10_1038_s44319_024_00332_1 crossref_primary_10_1128_mbio_01940_24 crossref_primary_10_1038_s41588_024_01706_w crossref_primary_10_1002_ctm2_1801 crossref_primary_10_1111_imm_13680 crossref_primary_10_3389_fonc_2023_1144184 crossref_primary_10_1016_j_biopha_2024_116652 crossref_primary_10_3389_fonc_2023_1241532 crossref_primary_10_3389_fgene_2022_903923 crossref_primary_10_3390_cancers16213687 crossref_primary_10_1016_j_tetlet_2023_154888 crossref_primary_10_1016_j_jbc_2025_110444 crossref_primary_10_1016_j_scienta_2025_114255 crossref_primary_10_1093_jxb_erad175 crossref_primary_10_3389_fpls_2022_1075279 crossref_primary_10_1146_annurev_biophys_071524_111008 crossref_primary_10_1371_journal_pbio_3003191 crossref_primary_10_31083_FBL27428 crossref_primary_10_1039_D5NR00686D crossref_primary_10_1093_nar_gkaf356 crossref_primary_10_1002_advs_202404608 crossref_primary_10_3390_cells13010004 crossref_primary_10_3389_fonc_2025_1613423 crossref_primary_10_3390_jcm12247738 crossref_primary_10_1016_j_ijbiomac_2024_130005 crossref_primary_10_1016_j_scitotenv_2024_174972 crossref_primary_10_1038_s41467_023_37480_2 crossref_primary_10_1093_femspd_ftad034 crossref_primary_10_1016_j_apsb_2025_08_022 crossref_primary_10_1016_j_pharmthera_2024_108638 crossref_primary_10_1073_pnas_2426449122 crossref_primary_10_1093_plphys_kiad614 crossref_primary_10_1007_s12035_024_04624_4 crossref_primary_10_1146_annurev_genom_120423_013542 crossref_primary_10_1186_s13059_025_03618_2 crossref_primary_10_1021_jasms_3c00223 crossref_primary_10_1016_j_ymthe_2025_09_005 crossref_primary_10_1016_j_jbc_2025_108464 crossref_primary_10_1111_tpj_16159 crossref_primary_10_3390_ijms25052750 crossref_primary_10_1021_acs_chemrestox_5c00150 crossref_primary_10_3390_a16090401 crossref_primary_10_1186_s13072_025_00614_5 crossref_primary_10_1083_jcb_202311021 crossref_primary_10_1186_s12943_023_01856_1 crossref_primary_10_1093_bib_bbae364 crossref_primary_10_3389_fgene_2022_1085391 crossref_primary_10_1016_j_jmb_2024_168671 crossref_primary_10_1016_j_jmb_2023_168394 crossref_primary_10_3390_biomedicines12071559 crossref_primary_10_1016_j_gde_2023_102147 crossref_primary_10_1093_stmcls_sxaf002 crossref_primary_10_1002_cbin_11975 crossref_primary_10_1016_j_micres_2024_128041 crossref_primary_10_1038_s41467_023_44121_1 crossref_primary_10_1007_s00418_024_02291_z crossref_primary_10_1007_s11596_025_00049_9 crossref_primary_10_1002_mco2_509 crossref_primary_10_1016_j_tranon_2025_102275 crossref_primary_10_1111_brv_13135 crossref_primary_10_1038_s41576_023_00684_9 crossref_primary_10_3389_fcell_2022_1070338 crossref_primary_10_1016_j_jmb_2024_168442 crossref_primary_10_1111_cpr_13733 crossref_primary_10_1016_j_jbc_2025_108163 crossref_primary_10_1186_s13072_024_00532_y crossref_primary_10_3390_ijms25115637 crossref_primary_10_1016_j_tetlet_2023_154602 crossref_primary_10_1016_j_molcel_2024_10_023 crossref_primary_10_1186_s13072_023_00491_w crossref_primary_10_1016_j_stem_2023_09_010 crossref_primary_10_1242_dev_204384 crossref_primary_10_1186_s13148_023_01562_1 crossref_primary_10_1186_s12864_025_11776_7 crossref_primary_10_1016_j_jgg_2024_09_008 crossref_primary_10_1042_BCJ20230011 crossref_primary_10_1016_j_isci_2025_112613 crossref_primary_10_1186_s13045_025_01726_x crossref_primary_10_1038_s41556_025_01687_w crossref_primary_10_1042_BCJ20220550 crossref_primary_10_1016_j_phrs_2024_107182 crossref_primary_10_31083_j_fbl2909331 crossref_primary_10_1111_febs_16759 crossref_primary_10_1016_j_ejmech_2025_117463 crossref_primary_10_1016_j_jprot_2023_104889 crossref_primary_10_3892_ol_2025_15238 crossref_primary_10_3389_fncir_2022_875873 crossref_primary_10_3389_freae_2023_1245832 crossref_primary_10_3390_ijms24021463 crossref_primary_10_1016_j_exer_2023_109673 crossref_primary_10_1093_bib_bbad165 crossref_primary_10_3390_dna5020022 crossref_primary_10_1038_s41388_025_03315_1 crossref_primary_10_1002_jnr_70017 crossref_primary_10_1016_j_nantod_2024_102519 crossref_primary_10_3390_cancers15020425 crossref_primary_10_1186_s13148_023_01574_x crossref_primary_10_1007_s11914_023_00808_4 crossref_primary_10_1038_s44318_024_00329_5 crossref_primary_10_1186_s12964_025_02333_6 crossref_primary_10_3389_fimmu_2024_1338922 crossref_primary_10_1016_j_conb_2023_102832 crossref_primary_10_1038_s41419_024_07117_3 crossref_primary_10_1126_sciadv_adv4082 crossref_primary_10_1038_s41419_025_07914_4 crossref_primary_10_1007_s00418_024_02293_x crossref_primary_10_1038_s41593_024_01653_z crossref_primary_10_1093_toxsci_kfae008 crossref_primary_10_3389_fimmu_2025_1676953 crossref_primary_10_3389_fimmu_2023_1171834 crossref_primary_10_3389_fcell_2025_1566567 crossref_primary_10_1002_mco2_782 crossref_primary_10_1038_s41377_025_01786_1 crossref_primary_10_1042_BCJ20230342 crossref_primary_10_1093_nar_gkaf188 crossref_primary_10_3390_ijms252212043 crossref_primary_10_1186_s40364_025_00805_y crossref_primary_10_3390_ijms26125799 crossref_primary_10_1038_s41392_024_01946_6 crossref_primary_10_1101_gad_352129_124 crossref_primary_10_3389_fpls_2022_984702 crossref_primary_10_1101_gr_277931_123 crossref_primary_10_1038_s41564_023_01509_5 crossref_primary_10_3390_ijms25031459 crossref_primary_10_1002_cac2_12633 crossref_primary_10_1371_journal_pgen_1011726 crossref_primary_10_1002_advs_202506529 crossref_primary_10_1186_s13072_024_00563_5 crossref_primary_10_1016_j_fsi_2025_110887 crossref_primary_10_1016_j_jad_2024_08_202 crossref_primary_10_1002_mco2_659 crossref_primary_10_1016_j_ajhg_2023_02_011 crossref_primary_10_1128_aem_01885_23 crossref_primary_10_1016_j_biomaterials_2025_123468 crossref_primary_10_1038_s41576_024_00723_z crossref_primary_10_1007_s11033_024_09853_3 crossref_primary_10_1042_EBC20253022 crossref_primary_10_1038_s41418_025_01533_4 crossref_primary_10_1021_acs_jafc_5c09513 crossref_primary_10_1016_j_tips_2023_12_002 crossref_primary_10_3389_fcell_2022_1068347 crossref_primary_10_3390_fermentation11040230 crossref_primary_10_1111_cns_14225 crossref_primary_10_1186_s42397_025_00225_1 crossref_primary_10_1007_s11010_025_05316_w crossref_primary_10_1038_s41590_024_01985_9 crossref_primary_10_7554_eLife_103953_3 crossref_primary_10_1016_j_ijbiomac_2025_140601 crossref_primary_10_1111_imm_13956 crossref_primary_10_1002_advs_202402838 crossref_primary_10_1016_j_redox_2025_103696 crossref_primary_10_1016_j_heliyon_2024_e38426 crossref_primary_10_3390_cells12121625 crossref_primary_10_1021_acs_jafc_5c05262 crossref_primary_10_1042_BCJ20230306 crossref_primary_10_1159_000541822 crossref_primary_10_3892_ijmm_2024_5428 crossref_primary_10_3390_biom14020140 crossref_primary_10_1016_j_gendis_2025_101622 crossref_primary_10_1007_s11274_024_03978_0 crossref_primary_10_1038_s41593_024_01652_0 crossref_primary_10_3390_diagnostics14060652 crossref_primary_10_1002_cac2_12610 crossref_primary_10_1021_acs_biochem_5c00114 crossref_primary_10_1016_j_anireprosci_2024_107534 crossref_primary_10_1080_19490976_2025_2490207 crossref_primary_10_1002_advs_202307526 crossref_primary_10_1007_s00412_023_00803_9 crossref_primary_10_4103_NRR_NRR_D_23_01498 crossref_primary_10_3389_fimmu_2024_1450440 crossref_primary_10_1002_mco2_752 crossref_primary_10_3390_genes14020329 crossref_primary_10_1186_s13059_025_03626_2 crossref_primary_10_1038_s41392_023_01575_5 crossref_primary_10_1038_s44319_024_00199_2 |
| Cites_doi | 10.1016/j.copbio.2018.07.005 10.1038/nature15401 10.1038/nature07829 10.1038/nature19361 10.1038/s41587-019-0296-7 10.1038/nrm3382 10.1002/j.1460-2075.1988.tb02956.x 10.1093/nar/gkr304 10.1126/science.1231382 10.1016/j.cell.2013.01.032 10.1038/ncb2113 10.1016/j.molcel.2019.11.011 10.1093/emboj/17.10.2886 10.7554/eLife.21856 10.1073/pnas.1403565111 10.1128/MCB.01529-06 10.1038/s41556-018-0248-3 10.1073/pnas.51.5.786 10.1093/nar/gkv090 10.1016/j.jmb.2011.01.003 10.1038/s41467-021-22636-9 10.1038/ncomms15315 10.1016/S1097-2765(00)80257-9 10.1016/j.molcel.2005.08.032 10.1038/s41576-019-0105-7 10.1016/j.cell.2012.06.051 10.1016/j.molcel.2015.02.029 10.1126/science.abg7216 10.1016/j.cell.2012.08.005 10.1016/j.devcel.2019.08.004 10.1101/2021.07.08.451691v1.full 10.1016/j.celrep.2021.109799 10.1038/nrm.2017.119 10.1016/j.cell.2013.06.051 10.1016/j.cell.2017.07.041 10.1038/s41586-019-1668-3 10.1126/sciadv.aat6224 10.1038/s41586-021-03193-z 10.1038/nature23262 10.1016/S0092-8674(02)00759-6 10.1038/s41556-021-00725-7 10.1038/nrm.2017.47 10.1016/j.cell.2013.01.052 10.1126/science.aaw5118 10.1016/j.devcel.2011.10.008 10.1128/MCB.01517-07 10.1016/j.molcel.2019.11.021 10.1038/s41594-017-0013-5 10.1073/pnas.2002068117 10.1016/j.celrep.2019.12.057 10.1016/j.molcel.2014.06.005 10.1074/jbc.RA118.006620 10.1038/s41467-021-26147-5 10.1038/s41467-020-17238-w 10.1038/s41586-020-2097-z 10.1016/j.cell.2013.02.028 10.1128/MCB.25.8.3305-3316.2005 10.15252/embr.202152435 10.1016/j.cell.2005.10.023 10.1128/MCB.00689-13 10.1038/nature19360 10.1126/science.aaw8806 10.1038/s41467-021-24532-8 10.1038/nature22822 10.1038/s41467-021-26065-6 10.1016/j.molcel.2019.12.001 10.1016/S0092-8674(05)80078-9 10.1038/s41556-018-0093-4 10.1016/j.molcel.2018.10.046 10.1038/s41556-021-00776-w 10.1038/nsmb869 10.1038/nsmb.2599 10.1038/nrm2763 10.7554/eLife.03737 10.1101/gad.300704 10.1016/j.bbagrm.2020.194567 10.1016/j.tig.2015.10.007 10.1038/s41588-021-00820-3 10.1038/s41556-019-0282-9 10.1038/nature10956 10.1038/s41586-019-1877-9 10.1126/science.aar3958 10.7554/eLife.00861 10.1126/science.aau0583 10.1038/s41556-020-0536-6 10.1038/s41576-018-0060-8 10.1242/dev.033902 10.1016/0092-8674(91)90554-C 10.7554/eLife.23249 10.1101/gad.306464.117 10.1126/science.1065683 10.1038/nature19362 10.1016/j.molcel.2019.08.018 10.1101/gad.1198204 10.1038/nature12819 10.1016/j.cell.2012.09.045 10.7554/eLife.01632 10.1016/j.cell.2017.04.022 10.1371/journal.pone.0051765 10.1101/gad.326488.119 10.1242/dev.181180 10.1016/j.cell.2007.08.016 10.1073/pnas.1016071107 10.1016/j.cell.2019.08.037 10.1083/jcb.201611135 10.1038/s41467-019-09175-0 10.1016/j.molcel.2018.10.017 10.1038/nature22989 10.1016/0003-9861(72)90174-9 10.1126/science.aab2006 10.1186/s13059-020-01957-w 10.1016/j.molcel.2010.02.032 10.1038/ng.3965 10.1016/j.molcel.2010.12.016 10.1016/j.molcel.2009.07.027 10.1101/gad.265439.115 10.1016/j.cell.2019.10.009 10.1073/pnas.0502413102 10.1186/s12915-021-01017-0 10.1016/j.tibtech.2013.04.004 10.1016/j.tig.2011.06.006 10.1126/science.aam5339 10.1016/j.cell.2007.05.009 10.1038/nsmb.1629 10.1016/j.devcel.2021.01.014 10.1038/35065138 10.1101/gr.273771.120 10.1016/S0092-8674(02)00798-5 10.1016/j.molcel.2017.04.018 10.1038/ncomms10148 10.1038/ncomms6868 10.1016/j.molcel.2020.02.005 10.1038/nrm3931 10.1016/j.molcel.2010.08.020 10.1016/S0021-9258(19)81723-4 10.1038/ncomms7033 10.1073/pnas.1324036111 10.1038/nature12318 10.1038/nsmb851 10.1038/s41588-019-0428-5 10.1038/nsmb.1489 10.1093/nar/gkw848 10.1126/science.1124000 10.1038/s41586-019-1534-3 10.1126/science.1184208 10.1101/gad.195636.112 10.1038/s41586-019-1275-3 10.1038/nature14450 10.1101/2021.07.06.451383v1 10.1126/science.aar2555 10.1126/science.aai8236 10.1038/nature08866 10.1016/j.cell.2018.01.022 10.1016/j.cell.2006.10.043 10.1002/cpmb.85 10.1101/gad.331520.119 10.1126/science.aar4199 10.1038/s41586-021-03776-w 10.1038/ncomms12284 10.1128/MCB.20.23.8866-8878.2000 10.1016/j.tig.2019.02.003 10.1016/j.cell.2014.06.027 10.1038/nature11082 10.15252/embr.202051009 10.1038/s41588-020-0586-5 10.1126/science.1100576 10.1038/s41586-019-1038-1 10.1016/j.cbpa.2021.05.002 10.1016/j.celrep.2014.05.026 10.1534/genetics.118.301353 10.1093/emboj/17.11.3155 10.1038/nature13986 10.1093/nar/gks747 10.1038/nature04219 10.1038/s41467-020-15084-4 10.1016/j.molcel.2009.12.012 10.1038/s41586-019-1016-7 10.1016/j.molcel.2019.08.019 10.1016/j.molmet.2020.01.006 10.1038/s41586-019-1678-1 10.1038/s41467-019-09982-5 10.1016/j.ydbio.2011.04.010 10.1016/j.cell.2009.07.031 10.1038/s41467-019-10844-3 10.1038/nbt.3199 10.1016/j.cell.2018.11.018 10.1038/ncomms3233 10.1126/sciadv.1500737 10.1016/j.cell.2020.11.027 10.1038/nature04785 10.1038/ng.3385 10.1016/j.gde.2019.04.013 10.1074/jbc.273.10.5858 10.1101/gad.333542.119 10.1038/s41577-021-00628-6 10.1038/s41467-019-09582-3 10.1038/nature05987 10.1186/s13059-020-02201-1 10.1016/j.molcel.2016.08.032 10.1038/nmeth.3325 10.1101/gr.217240.116 10.1126/science.1181369 10.1093/nar/gkv722 10.1038/s41586-019-1024-7 10.1074/jbc.C400151200 10.1038/s41588-021-00821-2 10.1038/s41576-020-0270-8 10.1016/j.molcel.2017.01.009 10.4161/epi.20584 10.1074/jbc.M500796200 10.7554/eLife.49278 10.1016/j.molcel.2019.09.029 10.15252/embr.202152774 10.1038/35065132 10.1126/science.aba5545 10.1186/s13059-018-1483-4 10.1016/j.cub.2021.03.002 10.1016/j.celrep.2012.08.016 10.1038/s41467-020-20672-5 10.1038/s41467-019-09141-w 10.1038/s41580-020-0262-8 10.1038/s41586-020-2533-0 10.1016/j.cell.2011.08.008 10.1038/s41588-018-0218-5 10.1016/j.stem.2017.03.003 10.1016/S0092-8674(00)81683-9 10.1016/j.molcel.2021.09.019 10.1074/jbc.M115.661363 10.1093/nar/gkx578 10.1016/S0960-9822(02)01391-X 10.1016/j.devcel.2009.08.005 10.1016/S1097-2765(03)00092-3 10.1038/nature16496 10.1101/gad.321646.118 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2022 2022. Springer Nature Limited. Springer Nature Limited 2022. |
| Copyright_xml | – notice: Springer Nature Limited 2022 – notice: 2022. Springer Nature Limited. – notice: Springer Nature Limited 2022. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
| DOI | 10.1038/s41576-022-00468-7 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1471-0064 |
| EndPage | 580 |
| ExternalDocumentID | 35338361 10_1038_s41576_022_00468_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 27321 – fundername: Cancer Research UK grantid: RG96894 – fundername: Cancer Research UK grantid: C6946/A24843 – fundername: Wellcome Trust grantid: WT203144 |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION CGR CUY CVF ECM EIF NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c441t-ca2b19cc27e88dde85c294f6440e57dacb4679948e6dff7bededca85217024713 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 650 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773186600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Thu Sep 04 17:43:17 EDT 2025 Tue Oct 07 05:11:55 EDT 2025 Mon Jul 21 05:45:57 EDT 2025 Tue Nov 18 22:22:03 EST 2025 Sat Nov 29 02:34:59 EST 2025 Fri Feb 21 02:40:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | 2022. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-ca2b19cc27e88dde85c294f6440e57dacb4679948e6dff7bededca85217024713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4530-6359 0000-0001-5303-0973 |
| PMID | 35338361 |
| PQID | 2703231076 |
| PQPubID | 44267 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2644006577 proquest_journals_2703231076 pubmed_primary_35338361 crossref_primary_10_1038_s41576_022_00468_7 crossref_citationtrail_10_1038_s41576_022_00468_7 springer_journals_10_1038_s41576_022_00468_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAbbrev | Nat Rev Genet |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Erkek (CR36) 2013; 20 Escobar (CR91) 2019; 179 Schneider, Bannister, Weise, Kouzarides (CR72) 2004; 279 Schotta (CR99) 2004; 18 Gehani (CR73) 2010; 39 Fischle (CR74) 2005; 438 Tidwell, Allfrey, Mirsky (CR24) 1968; 243 Lieberman-Aiden (CR10) 2009; 326 Harada (CR191) 2019; 21 Byvoet, Shepherd, Hardin, Noland (CR8) 1972; 148 Mutlu (CR208) 2018; 4 Gibson (CR214) 2019; 179 Blackledge (CR80) 2020; 77 Tardat (CR152) 2010; 12 Zhang (CR202) 2018; 72 Henikoff, Shilatifard (CR26) 2011; 27 Rondinelli (CR155) 2015; 43 Hebbes, Thorne, Crane-Robinson (CR182) 1988; 7 Wiese, Bannister (CR5) 2020; 38 Van Rechem (CR61) 2021; 37 Gehre (CR109) 2020; 52 Feng (CR163) 2020; 21 Zhang (CR106) 2019; 574 van de Werken (CR195) 2014; 5 Simon, Kingston (CR76) 2009; 10 Arnould (CR134) 2021; 590 Black (CR158) 2013; 154 Eeftens, Kapoor, Michieletto, Brangwynne (CR225) 2021; 12 Bannister (CR54) 2005; 280 Poleshko (CR169) 2019; 8 Gopalan, Wang, Harper, Garber, Fazzio (CR189) 2021; 81 Ayrapetov, Gursoy-Yuzugullu, Xu, Xu, Price (CR145) 2014; 111 Brahma, Henikoff (CR186) 2019; 73 Alagoz (CR146) 2015; 43 Godfrey (CR124) 2019; 10 Boskovic (CR197) 2012; 7 Martire, Banaszynski (CR6) 2020; 21 O’Geen (CR233) 2017; 45 Chen (CR28) 2015; 47 Botuyan (CR138) 2006; 127 Nakamura (CR140) 2019; 21 Durrin, Mann, Kayne, Grunstein (CR17) 1991; 65 Armache (CR69) 2020; 583 Zheng (CR198) 2016; 63 Dawson (CR63) 2012; 2 Li (CR144) 2014; 111 Wang, Fisher, Poulin (CR209) 2011; 355 Plys (CR84) 2019; 33 Huang (CR175) 2021; 31 Tessarz (CR119) 2014; 505 Cano-Rodriguez (CR32) 2016; 7 Tan (CR21) 2011; 146 Verkuijl, Rots (CR234) 2019; 55 Hormanseder (CR39) 2017; 21 Hainer, Fazzio (CR185) 2019; 126 Luger, Dechassa, Tremethick (CR1) 2012; 13 Nicetto (CR103) 2019; 363 Meers, Janssens, Henikoff (CR188) 2021 Lo (CR65) 2000; 5 Zhang, Zhang, Dong, Xiong, Zhu (CR46) 2020; 21 Beck (CR151) 2012; 26 Lindeman (CR199) 2011; 21 Flavahan (CR179) 2019; 575 McCarthy (CR104) 2021; 23 Sabari (CR22) 2015; 58 Kaiser, Semple (CR128) 2018; 19 Riising (CR92) 2014; 55 Larson (CR220) 2017; 547 Nacev (CR7) 2019; 567 Lange (CR114) 2013; 4 Shimko, North, Bruns, Poirier, Ottesen (CR111) 2011; 408 Long (CR154) 2020; 577 Kind (CR168) 2013; 153 Cosgrove, Boeke, Wolberger (CR14) 2004; 11 Kearns (CR230) 2015; 12 Dai, Ramesh, Locasale (CR4) 2020; 21 Zippo (CR66) 2009; 138 Wang (CR196) 2018; 20 Wang (CR221) 2019; 76 North (CR115) 2011; 39 Liu, Zhang, Liu, Schatz (CR130) 2021 Pengelly, Kalb, Finkl, Muller (CR79) 2015; 29 Clouaire, Legube (CR133) 2019; 35 van Leeuwen, Gafken, Gottschling (CR121) 2002; 109 Bannister (CR95) 2001; 410 Gowans (CR23) 2019; 76 Nicetto, Zaret (CR94) 2019; 55 Protacio, Li, Lowary, Widom (CR18) 2000; 20 Cho (CR216) 2018; 361 Zhang, Bone, Edmondson, Turner, Roth (CR19) 1998; 17 Klein (CR159) 2021; 372 Lachner, O’Carroll, Rea, Mechtler, Jenuwein (CR96) 2001; 410 Mas (CR174) 2018; 50 Lismer (CR41) 2021; 56 Mihola (CR127) 2021; 19 Dixon (CR11) 2012; 485 Coleman, Struhl (CR90) 2017; 356 Neumann (CR15) 2009; 36 Lai, Pugh (CR2) 2017; 18 Heintzman (CR42) 2009; 459 Tamburri (CR81) 2020; 77 Erdel (CR222) 2020; 78 Methot (CR212) 2021; 23 Chong (CR217) 2018; 361 Brehove (CR64) 2015; 290 Vakoc, Sachdeva, Wang, Blobel (CR55) 2006; 26 Allshire, Madhani (CR93) 2018; 19 Lawrence, Daujat, Schneider (CR122) 2016; 32 Chen, Djekidel, Zhang (CR87) 2021; 53 Wu, Wang, Zhang, Gan, Zhang (CR156) 2017; 45 Faulkner, Maksimovic, David (CR180) 2021; 63 Kundu (CR171) 2017; 65 Laue, Rajshekar, Courtney, Lewis, Goll (CR201) 2019; 10 Burton (CR105) 2020; 22 Dorighi (CR44) 2017; 66 Hughes, Kelley, Klose (CR48) 2020; 1863 Thorslund (CR135) 2015; 527 Altemose (CR192) 2021 Akkers (CR203) 2009; 17 Zhang (CR35) 2016; 537 Ng, Robert, Young, Struhl (CR37) 2003; 11 Benayoun (CR29) 2014; 158 Bleckwehl (CR47) 2021; 12 Li, Levitus, Bustamante, Widom (CR110) 2005; 12 Allfrey, Faulkner, Mirsky (CR12) 1964; 51 Rhodes (CR173) 2020; 30 Vermeulen (CR30) 2007; 131 Ninova, Fejes Toth, Aravin (CR102) 2019; 146 Liu (CR51) 2016; 537 Creyghton (CR43) 2010; 107 Dahl (CR34) 2016; 537 Sansam (CR149) 2018; 32 Shogren-Knaak (CR13) 2006; 311 Canzio (CR97) 2011; 41 Zenk (CR89) 2017; 357 Huang (CR59) 2019; 567 Eskeland (CR83) 2010; 38 Luco (CR58) 2010; 327 Martire (CR68) 2019; 51 Verdin, Ott (CR16) 2015; 16 Petruk (CR38) 2001; 294 Sitbon, Boyarchuk, Dingli, Loew, Almouzni (CR70) 2020; 11 Bannister, Schneider, Kouzarides (CR25) 2002; 109 Kreher (CR211) 2018; 210 Kaneshiro, Rechtsteiner, Strome (CR210) 2019; 10 Skene, Henikoff (CR184) 2017; 6 Mawer (CR120) 2021; 22 Lim (CR153) 2013; 33 Grey (CR129) 2017; 27 Pfister (CR142) 2014; 7 Deng (CR190) 2022; 375 Inoue, Jiang, Lu, Suzuki, Zhang (CR88) 2017; 547 Kaya-Okur (CR187) 2019; 10 Talbert, Meers, Henikoff (CR27) 2019; 20 Lauberth (CR31) 2013; 152 Rowley, Corces (CR161) 2018; 19 van Steensel, Belmont (CR166) 2017; 169 Hontelez (CR49) 2015; 6 Soufi, Donahue, Zaret (CR101) 2012; 151 Becker (CR141) 2021; 596 Pope (CR160) 2014; 515 Snowden, Gregory, Case, Pabo (CR226) 2002; 12 Kwon, Zhao, Lamonica, Zhou (CR232) 2017; 8 Aranda, Mas, Di Croce (CR77) 2015; 1 Falk (CR162) 2019; 570 Bao (CR118) 2019; 76 Pesavento, Yang, Kelleher, Mizzen (CR137) 2008; 28 Tropberger (CR116) 2013; 152 Miotto, Struhl (CR148) 2010; 37 Gaj, Gersbach, Barbas (CR227) 2013; 31 Schuettengruber, Cavalli (CR75) 2009; 136 Vastenhouw (CR200) 2010; 464 Lepack (CR108) 2020; 368 Spruce (CR126) 2020; 34 Hanahan, Weinberg (CR131) 2000; 100 Siklenka (CR40) 2015; 350 Li, Harrison, Villalta, Kaplan, Eisen (CR206) 2014; 3 Hake (CR67) 2005; 102 Towbin (CR167) 2012; 150 CR9 McSwiggen, Mir, Darzacq, Tjian (CR223) 2019; 33 Tatavosian (CR85) 2019; 294 Sabari (CR215) 2018; 361 Pengelly, Copur, Jackle, Herzig, Muller (CR78) 2013; 339 Francis, Kingston, Woodcock (CR82) 2004; 306 Brejc (CR178) 2017; 171 Oikawa (CR204) 2020; 11 Schubeler (CR123) 2004; 18 Rickels (CR45) 2017; 49 Rogakou, Pilch, Orr, Ivanova, Bonner (CR132) 1998; 273 Du (CR172) 2020; 77 Montavon (CR165) 2021; 12 Meers (CR60) 2017; 6 Mishra (CR157) 2018; 175 Carrozza (CR57) 2005; 123 Anderson (CR177) 2019; 51 Crane (CR176) 2015; 523 Barski (CR181) 2007; 129 Nitsch, Zorro Shahidian, Schneider (CR20) 2021; 22 Farrelly (CR107) 2019; 567 Mattiroli (CR136) 2012; 150 Daujat (CR100) 2009; 16 Armeev, Kniazeva, Komarova, Kirpichnikov, Shaytan (CR193) 2021; 12 Gong, Clouaire, Aguirrebengoa, Legube, Miller (CR143) 2017; 216 Chiarella (CR229) 2020; 38 Strom (CR219) 2017; 547 Hanna (CR52) 2018; 25 Murphy, Wu, James, Wike, Cairns (CR50) 2018; 172 Zorro Shahidian (CR117) 2021; 22 Seller, Cho, O’Farrell (CR207) 2019; 33 Ooi (CR53) 2007; 448 Strickfaden (CR218) 2020; 183 Hilton (CR231) 2015; 33 Newman (CR33) 2006; 441 Martinez-Balbas (CR228) 1998; 17 North (CR112) 2012; 40 Boettiger (CR170) 2016; 529 Kizer (CR56) 2005; 25 Macdonald (CR71) 2005; 20 Qin (CR147) 2019; 10 Di Cerbo (CR113) 2014; 3 Brind’Amour (CR183) 2015; 6 Bhattacharyya (CR213) 2021; 31 Gallego (CR224) 2020; 579 Turner (CR3) 1993; 75 Mei (CR86) 2021; 53 Chen (CR205) 2013; 2 Fradet-Turcotte (CR139) 2013; 499 Lu (CR125) 2008; 15 Xia (CR194) 2019; 365 Kuo (CR150) 2012; 484 Jain (CR235) 2021; 12 Weinberg (CR62) 2019; 573 Bian, Anderson, Yang, Meyer (CR164) 2020; 117 Jack (CR98) 2013; 8 LD Gallego (468_CR224) 2020; 579 S Martire (468_CR6) 2020; 21 E Crane (468_CR176) 2015; 523 M Lawrence (468_CR122) 2016; 32 W Zhang (468_CR19) 1998; 17 D Nicetto (468_CR94) 2019; 55 P Byvoet (468_CR8) 1972; 148 Y Huang (468_CR175) 2021; 31 AJ Bannister (468_CR54) 2005; 280 P Tessarz (468_CR119) 2014; 505 H Long (468_CR154) 2020; 577 RT Coleman (468_CR90) 2017; 356 AJ Plys (468_CR84) 2019; 33 A Harada (468_CR191) 2019; 21 MJ Carrozza (468_CR57) 2005; 123 B Schuettengruber (468_CR75) 2009; 136 B Zhang (468_CR202) 2018; 72 A Zippo (468_CR66) 2009; 138 JA Dahl (468_CR34) 2016; 537 J Brind’Amour (468_CR183) 2015; 6 VG Allfrey (468_CR12) 1964; 51 S Petruk (468_CR38) 2001; 294 T Gaj (468_CR227) 2013; 31 F van Leeuwen (468_CR121) 2002; 109 M Ninova (468_CR102) 2019; 146 K Brejc (468_CR178) 2017; 171 LK Durrin (468_CR17) 1991; 65 BD Towbin (468_CR167) 2012; 150 H O’Geen (468_CR233) 2017; 45 Y Feng (468_CR163) 2020; 21 MP Creyghton (468_CR43) 2010; 107 C Wang (468_CR196) 2018; 20 AJ Bannister (468_CR25) 2002; 109 L Godfrey (468_CR124) 2019; 10 K Siklenka (468_CR40) 2015; 350 CR Vakoc (468_CR55) 2006; 26 HH Ng (468_CR37) 2003; 11 UC Lange (468_CR114) 2013; 4 AR Pengelly (468_CR78) 2013; 339 EM Riising (468_CR92) 2014; 55 JDP Rhodes (468_CR173) 2020; 30 HL Huang (468_CR59) 2019; 567 BM Turner (468_CR3) 1993; 75 WA Flavahan (468_CR179) 2019; 575 P Tropberger (468_CR116) 2013; 152 MP Meers (468_CR60) 2017; 6 C Grey (468_CR129) 2017; 27 L Wang (468_CR221) 2019; 76 JA North (468_CR115) 2011; 39 A Burton (468_CR105) 2020; 22 R Wu (468_CR156) 2017; 45 B Qin (468_CR147) 2019; 10 G Schotta (468_CR99) 2004; 18 N Macdonald (468_CR71) 2005; 20 D Zhang (468_CR106) 2019; 574 AL Hughes (468_CR48) 2020; 1863 RF Luco (468_CR58) 2010; 327 EC Anderson (468_CR177) 2019; 51 SA Verkuijl (468_CR234) 2019; 55 EP Rogakou (468_CR132) 1998; 273 C Van Rechem (468_CR61) 2021; 37 Z Chen (468_CR87) 2021; 53 WK Cho (468_CR216) 2018; 361 AW Snowden (468_CR226) 2002; 12 BR Sabari (468_CR22) 2015; 58 JM Eeftens (468_CR225) 2021; 12 BA Nacev (468_CR7) 2019; 567 B Rondinelli (468_CR155) 2015; 43 ND Heintzman (468_CR42) 2009; 459 M Lachner (468_CR96) 2001; 410 W Xia (468_CR194) 2019; 365 AM Chiarella (468_CR229) 2020; 38 J Kind (468_CR168) 2013; 153 R Tatavosian (468_CR85) 2019; 294 XY Li (468_CR206) 2014; 3 K Chen (468_CR205) 2013; 2 NA Kearns (468_CR230) 2015; 12 JC Black (468_CR158) 2013; 154 D Nicetto (468_CR103) 2019; 363 C Spruce (468_CR126) 2020; 34 S Brahma (468_CR186) 2019; 73 LC Lindeman (468_CR199) 2011; 21 RC Akkers (468_CR203) 2009; 17 AR Strom (468_CR219) 2017; 547 NL Vastenhouw (468_CR200) 2010; 464 S Aranda (468_CR77) 2015; 1 RU Protacio (468_CR18) 2000; 20 Q Bian (468_CR164) 2020; 117 E Hormanseder (468_CR39) 2017; 21 D Canzio (468_CR97) 2011; 41 X Liu (468_CR51) 2016; 537 W Fischle (468_CR74) 2005; 438 CA Seller (468_CR207) 2019; 33 JA Simon (468_CR76) 2009; 10 F Mattiroli (468_CR136) 2012; 150 JR Newman (468_CR33) 2006; 441 S Jain (468_CR235) 2021; 12 GA Armeev (468_CR193) 2021; 12 SB Hake (468_CR67) 2005; 102 F Gong (468_CR143) 2017; 216 HS Kaya-Okur (468_CR187) 2019; 10 MJ Rowley (468_CR161) 2018; 19 A Lismer (468_CR41) 2021; 56 L Zorro Shahidian (468_CR117) 2021; 22 A Armache (468_CR69) 2020; 583 KR Kaneshiro (468_CR210) 2019; 10 F Zenk (468_CR89) 2017; 357 J Kreher (468_CR211) 2018; 210 WKM Lai (468_CR2) 2017; 18 WS Lo (468_CR65) 2000; 5 C van de Werken (468_CR195) 2014; 5 A Barski (468_CR181) 2007; 129 D Cano-Rodriguez (468_CR32) 2016; 7 MA Dawson (468_CR63) 2012; 2 SJ Hainer (468_CR185) 2019; 126 M Vermeulen (468_CR30) 2007; 131 S Tamburri (468_CR81) 2020; 77 D Hanahan (468_CR131) 2000; 100 A Inoue (468_CR88) 2017; 547 M Alagoz (468_CR146) 2015; 43 TR Hebbes (468_CR182) 1988; 7 T Bhattacharyya (468_CR213) 2021; 31 PJ Skene (468_CR184) 2017; 6 JR Becker (468_CR141) 2021; 596 CW Hanna (468_CR52) 2018; 25 SX Pfister (468_CR142) 2014; 7 A Boskovic (468_CR197) 2012; 7 MS Cosgrove (468_CR14) 2004; 11 T Zhang (468_CR46) 2020; 21 SM Lauberth (468_CR31) 2013; 152 R Rickels (468_CR45) 2017; 49 DN Weinberg (468_CR62) 2019; 573 B Zhang (468_CR35) 2016; 537 KN Klein (468_CR159) 2021; 372 S Faulkner (468_CR180) 2021; 63 T Montavon (468_CR165) 2021; 12 BA Benayoun (468_CR29) 2014; 158 M Brehove (468_CR64) 2015; 290 BD Pope (468_CR160) 2014; 515 R Eskeland (468_CR83) 2010; 38 LA Farrelly (468_CR107) 2019; 567 BR Sabari (468_CR215) 2018; 361 X Li (468_CR144) 2014; 111 MK Ayrapetov (468_CR145) 2014; 111 IB Hilton (468_CR231) 2015; 33 H Neumann (468_CR15) 2009; 36 AP Jack (468_CR98) 2013; 8 S Martire (468_CR68) 2019; 51 B van Steensel (468_CR166) 2017; 169 E Lieberman-Aiden (468_CR10) 2009; 326 V Di Cerbo (468_CR113) 2014; 3 S Gopalan (468_CR189) 2021; 81 AG Larson (468_CR220) 2017; 547 AR Pengelly (468_CR79) 2015; 29 N Altemose (468_CR192) 2021 JR Dixon (468_CR11) 2012; 485 KM Dorighi (468_CR44) 2017; 66 C Liu (468_CR130) 2021 T Clouaire (468_CR133) 2019; 35 AJ Kuo (468_CR150) 2012; 484 C Arnould (468_CR134) 2021; 590 T Thorslund (468_CR135) 2015; 527 A Poleshko (468_CR169) 2019; 8 S Kundu (468_CR171) 2017; 65 MA Martinez-Balbas (468_CR228) 1998; 17 KO Kizer (468_CR56) 2005; 25 M Oikawa (468_CR204) 2020; 11 S Chong (468_CR217) 2018; 361 BA Gibson (468_CR214) 2019; 179 R Schneider (468_CR72) 2004; 279 RC Allshire (468_CR93) 2018; 19 Y Deng (468_CR190) 2022; 375 H Strickfaden (468_CR218) 2020; 183 O Mihola (468_CR127) 2021; 19 S Daujat (468_CR100) 2009; 16 M Wiese (468_CR5) 2020; 38 E Verdin (468_CR16) 2015; 16 S Nitsch (468_CR20) 2021; 22 MP Meers (468_CR188) 2021 S Henikoff (468_CR26) 2011; 27 DB Beck (468_CR151) 2012; 26 K Laue (468_CR201) 2019; 10 PJ Murphy (468_CR50) 2018; 172 VB Kaiser (468_CR128) 2018; 19 S Hontelez (468_CR49) 2015; 6 B Miotto (468_CR148) 2010; 37 X Bao (468_CR118) 2019; 76 JJ Pesavento (468_CR137) 2008; 28 AJ Bannister (468_CR95) 2001; 410 NJ Francis (468_CR82) 2004; 306 M Falk (468_CR162) 2019; 570 M Shogren-Knaak (468_CR13) 2006; 311 Z Dai (468_CR4) 2020; 21 S Mishra (468_CR157) 2018; 175 S Wang (468_CR209) 2011; 355 SS Gehani (468_CR73) 2010; 39 D Schubeler (468_CR123) 2004; 18 K Nakamura (468_CR140) 2019; 21 DT McSwiggen (468_CR223) 2019; 33 RL McCarthy (468_CR104) 2021; 23 JC Shimko (468_CR111) 2011; 408 AE Lepack (468_CR108) 2020; 368 AN Boettiger (468_CR170) 2016; 529 T Tidwell (468_CR24) 1968; 243 D Sitbon (468_CR70) 2020; 11 JA North (468_CR112) 2012; 40 M Tardat (468_CR152) 2010; 12 JSP Mawer (468_CR120) 2021; 22 F Erdel (468_CR222) 2020; 78 468_CR9 S Erkek (468_CR36) 2013; 20 G Li (468_CR110) 2005; 12 CG Sansam (468_CR149) 2018; 32 G Mas (468_CR174) 2018; 50 T Bleckwehl (468_CR47) 2021; 12 A Soufi (468_CR101) 2012; 151 X Lu (468_CR125) 2008; 15 K Luger (468_CR1) 2012; 13 TM Escobar (468_CR91) 2019; 179 DY Kwon (468_CR232) 2017; 8 NP Blackledge (468_CR80) 2020; 77 B Mutlu (468_CR208) 2018; 4 PB Talbert (468_CR27) 2019; 20 H Mei (468_CR86) 2021; 53 HJ Lim (468_CR153) 2013; 33 SKT Ooi (468_CR53) 2007; 448 GJ Gowans (468_CR23) 2019; 76 SP Methot (468_CR212) 2021; 23 A Fradet-Turcotte (468_CR139) 2013; 499 MV Botuyan (468_CR138) 2006; 127 M Gehre (468_CR109) 2020; 52 K Chen (468_CR28) 2015; 47 Z Du (468_CR172) 2020; 77 M Tan (468_CR21) 2011; 146 H Zheng (468_CR198) 2016; 63 |
| References_xml | – volume: 55 start-page: 68 year: 2019 end-page: 73 ident: CR234 article-title: The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.07.005 – volume: 527 start-page: 389 year: 2015 end-page: 393 ident: CR135 article-title: Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage publication-title: Nature doi: 10.1038/nature15401 – volume: 459 start-page: 108 year: 2009 end-page: 112 ident: CR42 article-title: Histone modifications at human enhancers reflect global cell-type-specific gene expression publication-title: Nature doi: 10.1038/nature07829 – volume: 537 start-page: 553 year: 2016 end-page: 557 ident: CR35 article-title: Allelic reprogramming of the histone modification H3K4me3 in early mammalian development publication-title: Nature doi: 10.1038/nature19361 – volume: 38 start-page: 50 year: 2020 end-page: 55 ident: CR229 article-title: Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0296-7 – volume: 13 start-page: 436 year: 2012 end-page: 447 ident: CR1 article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3382 – volume: 7 start-page: 1395 year: 1988 end-page: 1402 ident: CR182 article-title: A direct link between core histone acetylation and transcriptionally active chromatin publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02956.x – volume: 39 start-page: 6465 year: 2011 end-page: 6474 ident: CR115 article-title: Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr304 – volume: 339 start-page: 698 year: 2013 end-page: 699 ident: CR78 article-title: A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb publication-title: Science doi: 10.1126/science.1231382 – volume: 152 start-page: 859 year: 2013 end-page: 872 ident: CR116 article-title: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer publication-title: Cell doi: 10.1016/j.cell.2013.01.032 – volume: 12 start-page: 1086 year: 2010 end-page: 1093 ident: CR152 article-title: The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2113 – volume: 77 start-page: 825 year: 2020 end-page: 839.e7 ident: CR172 article-title: Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.011 – volume: 17 start-page: 2886 year: 1998 end-page: 2893 ident: CR228 article-title: The acetyltransferase activity of CBP stimulates transcription publication-title: EMBO J. doi: 10.1093/emboj/17.10.2886 – volume: 6 year: 2017 ident: CR184 article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites publication-title: eLife doi: 10.7554/eLife.21856 – volume: 111 start-page: 9169 year: 2014 end-page: 9174 ident: CR145 article-title: DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1403565111 – volume: 26 start-page: 9185 year: 2006 end-page: 9195 ident: CR55 article-title: Profile of histone lysine methylation across transcribed mammalian chromatin publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01529-06 – volume: 21 start-page: 287 year: 2019 end-page: 296 ident: CR191 article-title: A chromatin integration labelling method enables epigenomic profiling with lower input publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0248-3 – volume: 51 start-page: 786 year: 1964 end-page: 794 ident: CR12 article-title: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.51.5.786 – volume: 43 start-page: 2560 year: 2015 end-page: 2574 ident: CR155 article-title: H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv090 – volume: 408 start-page: 187 year: 2011 end-page: 204 ident: CR111 article-title: Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.01.003 – volume: 12 start-page: 2387 year: 2021 ident: CR193 article-title: Histone dynamics mediate DNA unwrapping and sliding in nucleosomes publication-title: Nat. Commun. doi: 10.1038/s41467-021-22636-9 – volume: 8 year: 2017 ident: CR232 article-title: Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC publication-title: Nat. Commun. doi: 10.1038/ncomms15315 – volume: 5 start-page: 917 year: 2000 end-page: 926 ident: CR65 article-title: Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80257-9 – volume: 20 start-page: 199 year: 2005 end-page: 211 ident: CR71 article-title: Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.08.032 – volume: 20 start-page: 283 year: 2019 end-page: 297 ident: CR27 article-title: Old cogs, new tricks: the evolution of gene expression in a chromatin context publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0105-7 – volume: 150 start-page: 934 year: 2012 end-page: 947 ident: CR167 article-title: Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery publication-title: Cell doi: 10.1016/j.cell.2012.06.051 – volume: 58 start-page: 203 year: 2015 end-page: 215 ident: CR22 article-title: Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.029 – volume: 375 start-page: 681 year: 2022 end-page: 686 ident: CR190 article-title: Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level publication-title: Science doi: 10.1126/science.abg7216 – volume: 150 start-page: 1182 year: 2012 end-page: 1195 ident: CR136 article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling publication-title: Cell doi: 10.1016/j.cell.2012.08.005 – volume: 51 start-page: 192 year: 2019 end-page: 207.e6 ident: CR177 article-title: X chromosome domain architecture regulates lifespan but not dosage compensation publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.08.004 – year: 2021 ident: CR188 article-title: Multifactorial chromatin regulatory landscapes at single cell resolution. Preprint at publication-title: bioRxiv doi: 10.1101/2021.07.08.451691v1.full – volume: 37 start-page: 109799 year: 2021 ident: CR61 article-title: Collective regulation of chromatin modifications predicts replication timing during cell cycle publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109799 – volume: 19 start-page: 229 year: 2018 end-page: 244 ident: CR93 article-title: Ten principles of heterochromatin formation and function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.119 – volume: 154 start-page: 541 year: 2013 end-page: 555 ident: CR158 article-title: KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors publication-title: Cell doi: 10.1016/j.cell.2013.06.051 – volume: 171 start-page: 85 year: 2017 end-page: 102.e23 ident: CR178 article-title: Dynamic control of X chromosome conformation and repression by a histone H4K20 demethylase publication-title: Cell doi: 10.1016/j.cell.2017.07.041 – volume: 575 start-page: 229 year: 2019 end-page: 233 ident: CR179 article-title: Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs publication-title: Nature doi: 10.1038/s41586-019-1668-3 – volume: 4 year: 2018 ident: CR208 article-title: Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in embryos publication-title: Sci. Adv. doi: 10.1126/sciadv.aat6224 – volume: 590 start-page: 660 year: 2021 end-page: 665 ident: CR134 article-title: Loop extrusion as a mechanism for formation of DNA damage repair foci publication-title: Nature doi: 10.1038/s41586-021-03193-z – volume: 547 start-page: 419 year: 2017 end-page: 424 ident: CR88 article-title: Maternal H3K27me3 controls DNA methylation-independent imprinting publication-title: Nature doi: 10.1038/nature23262 – volume: 109 start-page: 745 year: 2002 end-page: 756 ident: CR121 article-title: Dot1p modulates silencing in yeast by methylation of the nucleosome core publication-title: Cell doi: 10.1016/S0092-8674(02)00759-6 – volume: 23 start-page: 905 year: 2021 end-page: 914 ident: CR104 article-title: Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00725-7 – volume: 18 start-page: 548 year: 2017 end-page: 562 ident: CR2 article-title: Understanding nucleosome dynamics and their links to gene expression and DNA replication publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.47 – volume: 152 start-page: 1021 year: 2013 end-page: 1036 ident: CR31 article-title: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation publication-title: Cell doi: 10.1016/j.cell.2013.01.052 – volume: 365 start-page: 353 year: 2019 end-page: 360 ident: CR194 article-title: Resetting histone modifications during human parental-to-zygotic transition publication-title: Science doi: 10.1126/science.aaw5118 – volume: 21 start-page: 993 year: 2011 end-page: 1004 ident: CR199 article-title: Prepatterning of developmental gene expression by modified histones before zygotic genome activation publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.10.008 – volume: 28 start-page: 468 year: 2008 end-page: 486 ident: CR137 article-title: Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01517-07 – volume: 77 start-page: 840 year: 2020 end-page: 856.e845 ident: CR81 article-title: Histone H2AK119 mono-ubiquitination is essential for Polycomb-mediated transcriptional repression publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.021 – volume: 25 start-page: 73 year: 2018 end-page: 82 ident: CR52 article-title: MLL2 conveys transcription-independent H3K4 trimethylation in oocytes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0013-5 – volume: 117 start-page: 11459 year: 2020 end-page: 11470 ident: CR164 article-title: Histone H3K9 methylation promotes formation of genome compartments in via chromosome compaction and perinuclear anchoring publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002068117 – volume: 30 start-page: 820 year: 2020 end-page: 835.e10 ident: CR173 article-title: Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.12.057 – volume: 55 start-page: 347 year: 2014 end-page: 360 ident: CR92 article-title: Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.06.005 – volume: 294 start-page: 1451 year: 2019 end-page: 1463 ident: CR85 article-title: Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006620 – volume: 12 year: 2021 ident: CR225 article-title: Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction publication-title: Nat. Commun. doi: 10.1038/s41467-021-26147-5 – volume: 11 year: 2020 ident: CR204 article-title: Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription publication-title: Nat. Commun. doi: 10.1038/s41467-020-17238-w – volume: 579 start-page: 592 year: 2020 end-page: 597 ident: CR224 article-title: Phase separation directs ubiquitination of gene-body nucleosomes publication-title: Nature doi: 10.1038/s41586-020-2097-z – volume: 153 start-page: 178 year: 2013 end-page: 192 ident: CR168 article-title: Single-cell dynamics of genome-nuclear lamina interactions publication-title: Cell doi: 10.1016/j.cell.2013.02.028 – volume: 25 start-page: 3305 year: 2005 end-page: 3316 ident: CR56 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.8.3305-3316.2005 – volume: 22 year: 2021 ident: CR120 article-title: Nhp2 is a reader of H2AQ105me and part of a network integrating metabolism with rRNA synthesis publication-title: EMBO Rep. doi: 10.15252/embr.202152435 – volume: 123 start-page: 581 year: 2005 end-page: 592 ident: CR57 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell doi: 10.1016/j.cell.2005.10.023 – volume: 33 start-page: 4166 year: 2013 end-page: 4180 ident: CR153 article-title: The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00689-13 – volume: 537 start-page: 548 year: 2016 end-page: 552 ident: CR34 article-title: Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition publication-title: Nature doi: 10.1038/nature19360 – volume: 368 start-page: 197 year: 2020 end-page: 201 ident: CR108 article-title: Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking publication-title: Science doi: 10.1126/science.aaw8806 – volume: 12 year: 2021 ident: CR165 article-title: Complete loss of H3K9 methylation dissolves mouse heterochromatin organization publication-title: Nat. Commun. doi: 10.1038/s41467-021-24532-8 – volume: 547 start-page: 236 year: 2017 end-page: 240 ident: CR220 article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin publication-title: Nature doi: 10.1038/nature22822 – volume: 12 year: 2021 ident: CR47 article-title: Enhancer-associated H3K4 methylation safeguards in vitro germline competence publication-title: Nat. Commun. doi: 10.1038/s41467-021-26065-6 – volume: 77 start-page: 857 year: 2020 end-page: 874.e9 ident: CR80 article-title: PRC1 catalytic activity is central to Polycomb system function publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.12.001 – volume: 75 start-page: 5 year: 1993 end-page: 8 ident: CR3 article-title: Decoding the nucleosome publication-title: Cell doi: 10.1016/S0092-8674(05)80078-9 – volume: 20 start-page: 620 year: 2018 end-page: 631 ident: CR196 article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – volume: 73 start-page: 238 year: 2019 end-page: 249.e3 ident: CR186 article-title: RSC-associated subnucleosomes define MNase-sensitive promoters in yeast publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.046 – volume: 23 start-page: 1163 year: 2021 end-page: 1175 ident: CR212 article-title: H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00776-w – volume: 12 start-page: 46 year: 2005 end-page: 53 ident: CR110 article-title: Rapid spontaneous accessibility of nucleosomal DNA publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb869 – volume: 20 start-page: 868 year: 2013 end-page: 875 ident: CR36 article-title: Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2599 – volume: 10 start-page: 697 year: 2009 end-page: 708 ident: CR76 article-title: Mechanisms of polycomb gene silencing: knowns and unknowns publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2763 – volume: 3 year: 2014 ident: CR206 article-title: Establishment of regions of genomic activity during the maternal to zygotic transition publication-title: eLife doi: 10.7554/eLife.03737 – volume: 18 start-page: 1251 year: 2004 end-page: 1262 ident: CR99 article-title: A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin publication-title: Genes Dev. doi: 10.1101/gad.300704 – volume: 1863 start-page: 194567 year: 2020 ident: CR48 article-title: Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2020.194567 – volume: 32 start-page: 42 year: 2016 end-page: 56 ident: CR122 article-title: Lateral thinking: how histone modifications regulate gene expression publication-title: Trends Genet. doi: 10.1016/j.tig.2015.10.007 – volume: 53 start-page: 539 year: 2021 end-page: 550 ident: CR86 article-title: H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos publication-title: Nat. Genet. doi: 10.1038/s41588-021-00820-3 – volume: 21 start-page: 311 year: 2019 end-page: 318 ident: CR140 article-title: H4K20me0 recognition by BRCA1–BARD1 directs homologous recombination to sister chromatids publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0282-9 – volume: 484 start-page: 115 year: 2012 end-page: 119 ident: CR150 article-title: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome publication-title: Nature doi: 10.1038/nature10956 – volume: 577 start-page: 576 year: 2020 end-page: 581 ident: CR154 article-title: H2A.Z facilitates licensing and activation of early replication origins publication-title: Nature doi: 10.1038/s41586-019-1877-9 – volume: 361 year: 2018 ident: CR215 article-title: Coactivator condensation at super-enhancers links phase separation and gene control publication-title: Science doi: 10.1126/science.aar3958 – volume: 2 year: 2013 ident: CR205 article-title: A global change in RNA polymerase II pausing during the midblastula transition publication-title: eLife doi: 10.7554/eLife.00861 – volume: 363 start-page: 294 year: 2019 end-page: 297 ident: CR103 article-title: H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification publication-title: Science doi: 10.1126/science.aau0583 – volume: 22 start-page: 767 year: 2020 end-page: 778 ident: CR105 article-title: Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0536-6 – volume: 19 start-page: 789 year: 2018 end-page: 800 ident: CR161 article-title: Organizational principles of 3D genome architecture publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0060-8 – volume: 136 start-page: 3531 year: 2009 end-page: 3542 ident: CR75 article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice publication-title: Development doi: 10.1242/dev.033902 – volume: 65 start-page: 1023 year: 1991 end-page: 1031 ident: CR17 article-title: Yeast histone H4 N-terminal sequence is required for promoter activation in vivo publication-title: Cell doi: 10.1016/0092-8674(91)90554-C – volume: 6 year: 2017 ident: CR60 article-title: Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity publication-title: eLife doi: 10.7554/eLife.23249 – volume: 32 start-page: 224 year: 2018 end-page: 229 ident: CR149 article-title: A mechanism for epigenetic control of DNA replication publication-title: Genes Dev. doi: 10.1101/gad.306464.117 – volume: 294 start-page: 1331 year: 2001 end-page: 1334 ident: CR38 article-title: Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene publication-title: Science doi: 10.1126/science.1065683 – volume: 537 start-page: 558 year: 2016 end-page: 562 ident: CR51 article-title: Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos publication-title: Nature doi: 10.1038/nature19362 – volume: 76 start-page: 660 year: 2019 end-page: 675.e9 ident: CR118 article-title: Glutarylation of histone H4 lysine 91 regulates chromatin dynamics publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.08.018 – volume: 18 start-page: 1263 year: 2004 end-page: 1271 ident: CR123 article-title: The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote publication-title: Genes Dev. doi: 10.1101/gad.1198204 – volume: 505 start-page: 564 year: 2014 end-page: 568 ident: CR119 article-title: Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification publication-title: Nature doi: 10.1038/nature12819 – volume: 151 start-page: 994 year: 2012 end-page: 1004 ident: CR101 article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 3 year: 2014 ident: CR113 article-title: Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription publication-title: eLife doi: 10.7554/eLife.01632 – volume: 169 start-page: 780 year: 2017 end-page: 791 ident: CR166 article-title: Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression publication-title: Cell doi: 10.1016/j.cell.2017.04.022 – volume: 8 year: 2013 ident: CR98 article-title: H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization publication-title: PLoS One doi: 10.1371/journal.pone.0051765 – volume: 33 start-page: 799 year: 2019 end-page: 813 ident: CR84 article-title: Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2 publication-title: Genes Dev. doi: 10.1101/gad.326488.119 – volume: 146 start-page: dev181180 year: 2019 ident: CR102 article-title: The control of gene expression and cell identity by H3K9 trimethylation publication-title: Development doi: 10.1242/dev.181180 – volume: 131 start-page: 58 year: 2007 end-page: 69 ident: CR30 article-title: Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4 publication-title: Cell doi: 10.1016/j.cell.2007.08.016 – volume: 107 start-page: 21931 year: 2010 end-page: 21936 ident: CR43 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016071107 – volume: 179 start-page: 470 year: 2019 end-page: 484.e21 ident: CR214 article-title: Organization of chromatin by intrinsic and regulated phase separation publication-title: Cell doi: 10.1016/j.cell.2019.08.037 – volume: 216 start-page: 1959 year: 2017 end-page: 1974 ident: CR143 article-title: Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair publication-title: J. Cell Biol. doi: 10.1083/jcb.201611135 – volume: 10 year: 2019 ident: CR147 article-title: UFL1 promotes histone H4 ufmylation and ATM activation publication-title: Nat. Commun. doi: 10.1038/s41467-019-09175-0 – volume: 72 start-page: 673 year: 2018 end-page: 686.e6 ident: CR202 article-title: Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.017 – volume: 547 start-page: 241 year: 2017 end-page: 245 ident: CR219 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature doi: 10.1038/nature22989 – volume: 148 start-page: 558 year: 1972 end-page: 567 ident: CR8 article-title: The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(72)90174-9 – volume: 350 start-page: aab2006 year: 2015 ident: CR40 article-title: Disruption of histone methylation in developing sperm impairs offspring health transgenerationally publication-title: Science doi: 10.1126/science.aab2006 – volume: 21 year: 2020 ident: CR46 article-title: Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells publication-title: Genome Biol. doi: 10.1186/s13059-020-01957-w – volume: 38 start-page: 452 year: 2010 end-page: 464 ident: CR83 article-title: Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.032 – volume: 49 start-page: 1647 year: 2017 end-page: 1653 ident: CR45 article-title: Histone H3K4 monomethylation catalyzed by TRR and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability publication-title: Nat. Genet. doi: 10.1038/ng.3965 – volume: 41 start-page: 67 year: 2011 end-page: 81 ident: CR97 article-title: Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.12.016 – volume: 36 start-page: 153 year: 2009 end-page: 163 ident: CR15 article-title: A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.07.027 – volume: 29 start-page: 1487 year: 2015 end-page: 1492 ident: CR79 article-title: Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation publication-title: Genes Dev. doi: 10.1101/gad.265439.115 – volume: 179 start-page: 953 year: 2019 end-page: 963.e11 ident: CR91 article-title: Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication publication-title: Cell doi: 10.1016/j.cell.2019.10.009 – volume: 102 start-page: 6344 year: 2005 end-page: 6349 ident: CR67 article-title: Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0502413102 – volume: 19 year: 2021 ident: CR127 article-title: Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility publication-title: BMC Biol. doi: 10.1186/s12915-021-01017-0 – volume: 31 start-page: 397 year: 2013 end-page: 405 ident: CR227 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 – volume: 27 start-page: 389 year: 2011 end-page: 396 ident: CR26 article-title: Histone modification: cause or cog? publication-title: Trends Genet. doi: 10.1016/j.tig.2011.06.006 – volume: 357 start-page: 212 year: 2017 end-page: 216 ident: CR89 article-title: Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition publication-title: Science doi: 10.1126/science.aam5339 – volume: 129 start-page: 823 year: 2007 end-page: 837 ident: CR181 article-title: High-resolution profiling of histone methylations in the human genome publication-title: Cell doi: 10.1016/j.cell.2007.05.009 – volume: 16 start-page: 777 year: 2009 end-page: 781 ident: CR100 article-title: H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1629 – volume: 56 start-page: 671 year: 2021 end-page: 686.e6 ident: CR41 article-title: Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.01.014 – volume: 410 start-page: 120 year: 2001 end-page: 124 ident: CR95 article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain publication-title: Nature doi: 10.1038/35065138 – volume: 31 start-page: 1230 year: 2021 end-page: 1244 ident: CR175 article-title: Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in publication-title: Genome Res. doi: 10.1101/gr.273771.120 – volume: 109 start-page: 801 year: 2002 end-page: 806 ident: CR25 article-title: Histone methylation: dynamic or static? publication-title: Cell doi: 10.1016/S0092-8674(02)00798-5 – volume: 66 start-page: 568 year: 2017 end-page: 576.e4 ident: CR44 article-title: Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.04.018 – volume: 6 year: 2015 ident: CR49 article-title: Embryonic transcription is controlled by maternally defined chromatin state publication-title: Nat. Commun. doi: 10.1038/ncomms10148 – volume: 5 year: 2014 ident: CR195 article-title: Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications publication-title: Nat. Commun. doi: 10.1038/ncomms6868 – volume: 78 start-page: 236 year: 2020 end-page: 249.e7 ident: CR222 article-title: Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.005 – volume: 16 start-page: 258 year: 2015 end-page: 264 ident: CR16 article-title: 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3931 – volume: 39 start-page: 886 year: 2010 end-page: 900 ident: CR73 article-title: Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.08.020 – volume: 243 start-page: 707 year: 1968 end-page: 715 ident: CR24 article-title: The methylation of histones during regeneration of the liver publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)81723-4 – volume: 6 year: 2015 ident: CR183 article-title: An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations publication-title: Nat. Commun. doi: 10.1038/ncomms7033 – volume: 111 start-page: 7096 year: 2014 end-page: 7101 ident: CR144 article-title: Histone demethylase KDM5B is a key regulator of genome stability publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1324036111 – volume: 499 start-page: 50 year: 2013 end-page: 54 ident: CR139 article-title: 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark publication-title: Nature doi: 10.1038/nature12318 – volume: 11 start-page: 1037 year: 2004 end-page: 1043 ident: CR14 article-title: Regulated nucleosome mobility and the histone code publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb851 – volume: 51 start-page: 941 year: 2019 end-page: 946 ident: CR68 article-title: Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation publication-title: Nat. Genet. doi: 10.1038/s41588-019-0428-5 – volume: 15 start-page: 1122 year: 2008 end-page: 1124 ident: CR125 article-title: The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1489 – volume: 45 start-page: 169 year: 2017 end-page: 180 ident: CR156 article-title: H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw848 – volume: 311 start-page: 844 year: 2006 end-page: 847 ident: CR13 article-title: Histone H4-K16 acetylation controls chromatin structure and protein interactions publication-title: Science doi: 10.1126/science.1124000 – volume: 573 start-page: 281 year: 2019 end-page: 286 ident: CR62 article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape publication-title: Nature doi: 10.1038/s41586-019-1534-3 – volume: 327 start-page: 996 year: 2010 end-page: 1000 ident: CR58 article-title: Regulation of alternative splicing by histone modifications publication-title: Science doi: 10.1126/science.1184208 – volume: 26 start-page: 2580 year: 2012 end-page: 2589 ident: CR151 article-title: The role of PR-Set7 in replication licensing depends on Suv4-20h publication-title: Genes Dev. doi: 10.1101/gad.195636.112 – volume: 570 start-page: 395 year: 2019 end-page: 399 ident: CR162 article-title: Heterochromatin drives compartmentalization of inverted and conventional nuclei publication-title: Nature doi: 10.1038/s41586-019-1275-3 – volume: 523 start-page: 240 year: 2015 end-page: 244 ident: CR176 article-title: Condensin-driven remodelling of X chromosome topology during dosage compensation publication-title: Nature doi: 10.1038/nature14450 – year: 2021 ident: CR192 article-title: DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome-wide. Preprint at publication-title: bioRxiv doi: 10.1101/2021.07.06.451383v1 – volume: 361 year: 2018 ident: CR217 article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science doi: 10.1126/science.aar2555 – volume: 356 year: 2017 ident: CR90 article-title: Causal role for inheritance of H3K27me3 in maintaining the OFF state of a HOX gene publication-title: Science doi: 10.1126/science.aai8236 – volume: 464 start-page: 922 year: 2010 end-page: 926 ident: CR200 article-title: Chromatin signature of embryonic pluripotency is established during genome activation publication-title: Nature doi: 10.1038/nature08866 – volume: 172 start-page: 993 year: 2018 end-page: 1006.e13 ident: CR50 article-title: Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming publication-title: Cell doi: 10.1016/j.cell.2018.01.022 – volume: 127 start-page: 1361 year: 2006 end-page: 1373 ident: CR138 article-title: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair publication-title: Cell doi: 10.1016/j.cell.2006.10.043 – volume: 126 year: 2019 ident: CR185 article-title: High-resolution chromatin profiling using CUT&RUN publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/cpmb.85 – volume: 33 start-page: 1619 year: 2019 end-page: 1634 ident: CR223 article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences publication-title: Genes Dev. doi: 10.1101/gad.331520.119 – volume: 361 start-page: 412 year: 2018 end-page: 415 ident: CR216 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science doi: 10.1126/science.aar4199 – volume: 596 start-page: 433 year: 2021 end-page: 437 ident: CR141 article-title: BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination publication-title: Nature doi: 10.1038/s41586-021-03776-w – volume: 7 year: 2016 ident: CR32 article-title: Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner publication-title: Nat. Commun. doi: 10.1038/ncomms12284 – volume: 20 start-page: 8866 year: 2000 end-page: 8878 ident: CR18 article-title: Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.23.8866-8878.2000 – volume: 35 start-page: 330 year: 2019 end-page: 345 ident: CR133 article-title: A snapshot on the chromatin response to DNA double-strand breaks publication-title: Trends Genet. doi: 10.1016/j.tig.2019.02.003 – volume: 158 start-page: 673 year: 2014 end-page: 688 ident: CR29 article-title: H3K4me3 breadth is linked to cell identity and transcriptional consistency publication-title: Cell doi: 10.1016/j.cell.2014.06.027 – volume: 485 start-page: 376 year: 2012 end-page: 380 ident: CR11 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 22 year: 2021 ident: CR117 article-title: Succinylation of H3K122 destabilizes nucleosomes and enhances transcription publication-title: EMBO Rep. doi: 10.15252/embr.202051009 – volume: 52 start-page: 273 year: 2020 end-page: 282 ident: CR109 article-title: Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy publication-title: Nat. Genet. doi: 10.1038/s41588-020-0586-5 – volume: 306 start-page: 1574 year: 2004 end-page: 1577 ident: CR82 article-title: Chromatin compaction by a Polycomb group protein complex publication-title: Science doi: 10.1126/science.1100576 – volume: 567 start-page: 473 year: 2019 end-page: 478 ident: CR7 article-title: The expanding landscape of ‘oncohistone’ mutations in human cancers publication-title: Nature doi: 10.1038/s41586-019-1038-1 – volume: 63 start-page: 180 year: 2021 end-page: 187 ident: CR180 article-title: A chemical field guide to histone nonenzymatic modifications publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2021.05.002 – volume: 7 start-page: 2006 year: 2014 end-page: 2018 ident: CR142 article-title: SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.026 – volume: 210 start-page: 969 year: 2018 end-page: 982 ident: CR211 article-title: Distinct roles of two histone methyltransferases in transmitting H3K36me3-based epigenetic memory across generations in publication-title: Genetics doi: 10.1534/genetics.118.301353 – volume: 17 start-page: 3155 year: 1998 end-page: 3167 ident: CR19 article-title: Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase publication-title: EMBO J. doi: 10.1093/emboj/17.11.3155 – volume: 515 start-page: 402 year: 2014 end-page: 405 ident: CR160 article-title: Topologically associating domains are stable units of replication-timing regulation publication-title: Nature doi: 10.1038/nature13986 – volume: 40 start-page: 10215 year: 2012 end-page: 10227 ident: CR112 article-title: Regulation of the nucleosome unwrapping rate controls DNA accessibility publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks747 – volume: 438 start-page: 1116 year: 2005 end-page: 1122 ident: CR74 article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation publication-title: Nature doi: 10.1038/nature04219 – volume: 11 year: 2020 ident: CR70 article-title: Histone variant H3.3 residue S31 is essential for gastrulation regardless of the deposition pathway publication-title: Nat. Commun. doi: 10.1038/s41467-020-15084-4 – volume: 37 start-page: 57 year: 2010 end-page: 66 ident: CR148 article-title: HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.012 – volume: 567 start-page: 414 year: 2019 end-page: 419 ident: CR59 article-title: Histone H3 trimethylation at lysine 36 guides m A RNA modification co-transcriptionally publication-title: Nature doi: 10.1038/s41586-019-1016-7 – volume: 76 start-page: 646 year: 2019 end-page: 659.e6 ident: CR221 article-title: Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.08.019 – volume: 38 start-page: 100942 year: 2020 ident: CR5 article-title: Two genomes, one cell: mitochondrial–nuclear coordination via epigenetic pathways publication-title: Mol. Metab. doi: 10.1016/j.molmet.2020.01.006 – volume: 574 start-page: 575 year: 2019 end-page: 580 ident: CR106 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 10 year: 2019 ident: CR187 article-title: CUT&Tag for efficient epigenomic profiling of small samples and single cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-09982-5 – volume: 355 start-page: 227 year: 2011 end-page: 238 ident: CR209 article-title: Lineage specific trimethylation of H3 on lysine 4 during early embryogenesis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.04.010 – volume: 138 start-page: 1122 year: 2009 end-page: 1136 ident: CR66 article-title: Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation publication-title: Cell doi: 10.1016/j.cell.2009.07.031 – volume: 10 year: 2019 ident: CR124 article-title: DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation publication-title: Nat. Commun. doi: 10.1038/s41467-019-10844-3 – volume: 33 start-page: 510 year: 2015 end-page: 517 ident: CR231 article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3199 – volume: 175 start-page: 1716 year: 2018 ident: CR157 article-title: Cross-talk between lysine-modifying enzymes controls site-specific DNA amplifications publication-title: Cell doi: 10.1016/j.cell.2018.11.018 – volume: 4 year: 2013 ident: CR114 article-title: Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin publication-title: Nat. Commun. doi: 10.1038/ncomms3233 – volume: 1 year: 2015 ident: CR77 article-title: Regulation of gene transcription by Polycomb proteins publication-title: Sci. Adv. doi: 10.1126/sciadv.1500737 – volume: 183 start-page: 1772 year: 2020 end-page: 1784.e13 ident: CR218 article-title: Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells publication-title: Cell doi: 10.1016/j.cell.2020.11.027 – volume: 441 start-page: 840 year: 2006 end-page: 846 ident: CR33 article-title: Single-cell proteomic analysis of reveals the architecture of biological noise publication-title: Nature doi: 10.1038/nature04785 – volume: 47 start-page: 1149 year: 2015 end-page: 1157 ident: CR28 article-title: Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes publication-title: Nat. Genet. doi: 10.1038/ng.3385 – volume: 55 start-page: 1 year: 2019 end-page: 10 ident: CR94 article-title: Role of H3K9me3 heterochromatin in cell identity establishment and maintenance publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2019.04.013 – volume: 273 start-page: 5858 year: 1998 end-page: 5868 ident: CR132 article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.10.5858 – volume: 34 start-page: 398 year: 2020 end-page: 412 ident: CR126 article-title: HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots publication-title: Genes Dev. doi: 10.1101/gad.333542.119 – year: 2021 ident: CR130 article-title: Structural insights into the evolution of the RAG recombinase publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00628-6 – volume: 10 year: 2019 ident: CR201 article-title: The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo publication-title: Nat. Commun. doi: 10.1038/s41467-019-09582-3 – volume: 448 start-page: 714 year: 2007 end-page: 717 ident: CR53 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature doi: 10.1038/nature05987 – volume: 21 year: 2020 ident: CR163 article-title: Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription publication-title: Genome Biol. doi: 10.1186/s13059-020-02201-1 – volume: 63 start-page: 1066 year: 2016 end-page: 1079 ident: CR198 article-title: Resetting epigenetic memory by reprogramming of histone modifications in mammals publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.032 – volume: 12 start-page: 401 year: 2015 end-page: 403 ident: CR230 article-title: Functional annotation of native enhancers with a Cas9–histone demethylase fusion publication-title: Nat. Methods doi: 10.1038/nmeth.3325 – volume: 27 start-page: 580 year: 2017 end-page: 590 ident: CR129 article-title: In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites publication-title: Genome Res. doi: 10.1101/gr.217240.116 – ident: CR9 – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: CR10 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 43 start-page: 7931 year: 2015 end-page: 7944 ident: CR146 article-title: SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv722 – volume: 567 start-page: 535 year: 2019 end-page: 539 ident: CR107 article-title: Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3 publication-title: Nature doi: 10.1038/s41586-019-1024-7 – volume: 279 start-page: 23859 year: 2004 end-page: 23862 ident: CR72 article-title: Direct binding of INHAT to H3 tails disrupted by modifications publication-title: J. Biol. Chem. doi: 10.1074/jbc.C400151200 – volume: 53 start-page: 551 year: 2021 end-page: 563 ident: CR87 article-title: Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos publication-title: Nat. Genet. doi: 10.1038/s41588-021-00821-2 – volume: 21 start-page: 737 year: 2020 end-page: 753 ident: CR4 article-title: The evolving metabolic landscape of chromatin biology and epigenetics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0270-8 – volume: 65 start-page: 432 year: 2017 end-page: 446.e5 ident: CR171 article-title: Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.009 – volume: 7 start-page: 747 year: 2012 end-page: 757 ident: CR197 article-title: Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation publication-title: Epigenetics doi: 10.4161/epi.20584 – volume: 280 start-page: 17732 year: 2005 end-page: 17736 ident: CR54 article-title: Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500796200 – volume: 8 year: 2019 ident: CR169 article-title: H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis publication-title: eLife doi: 10.7554/eLife.49278 – volume: 76 start-page: 909 year: 2019 end-page: 921.e903 ident: CR23 article-title: Recognition of histone crotonylation by TAF14 links metabolic state to gene expression publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.029 – volume: 22 year: 2021 ident: CR20 article-title: Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism publication-title: EMBO Rep. doi: 10.15252/embr.202152774 – volume: 410 start-page: 116 year: 2001 end-page: 120 ident: CR96 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature doi: 10.1038/35065132 – volume: 372 start-page: 371 year: 2021 end-page: 378 ident: CR159 article-title: Replication timing maintains the global epigenetic state in human cells publication-title: Science doi: 10.1126/science.aba5545 – volume: 19 year: 2018 ident: CR128 article-title: Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline publication-title: Genome Biol. doi: 10.1186/s13059-018-1483-4 – volume: 31 start-page: 1351 year: 2021 ident: CR213 article-title: and meiotic cohesin proteins cooperatively promote DNA double-strand break formation in mammalian spermatocytes publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.03.002 – volume: 2 start-page: 470 year: 2012 end-page: 477 ident: CR63 article-title: Three distinct patterns of histone H3Y41 phosphorylation mark active genes publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.08.016 – volume: 12 year: 2021 ident: CR235 article-title: TALEN outperforms Cas9 in editing heterochromatin target sites publication-title: Nat. Commun. doi: 10.1038/s41467-020-20672-5 – volume: 10 year: 2019 ident: CR210 article-title: Sperm-inherited H3K27me3 impacts offspring transcription and development in publication-title: Nat. Commun. doi: 10.1038/s41467-019-09141-w – volume: 21 start-page: 522 year: 2020 end-page: 541 ident: CR6 article-title: The roles of histone variants in fine-tuning chromatin organization and function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0262-8 – volume: 583 start-page: 852 year: 2020 end-page: 857 ident: CR69 article-title: Histone H3.3 phosphorylation amplifies stimulation-induced transcription publication-title: Nature doi: 10.1038/s41586-020-2533-0 – volume: 146 start-page: 1016 year: 2011 end-page: 1028 ident: CR21 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 50 start-page: 1452 year: 2018 end-page: 1462 ident: CR174 article-title: Promoter bivalency favors an open chromatin architecture in embryonic stem cells publication-title: Nat. Genet. doi: 10.1038/s41588-018-0218-5 – volume: 21 start-page: 135 year: 2017 end-page: 143.e136 ident: CR39 article-title: H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.03.003 – volume: 100 start-page: 57 year: 2000 end-page: 70 ident: CR131 article-title: The hallmarks of cancer publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – volume: 81 start-page: 4736 year: 2021 end-page: 4746.e5 ident: CR189 article-title: Simultaneous profiling of multiple chromatin proteins in the same cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.09.019 – volume: 290 start-page: 22612 year: 2015 end-page: 22621 ident: CR64 article-title: Histone core phosphorylation regulates DNA accessibility publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.661363 – volume: 45 start-page: 9901 year: 2017 end-page: 9916 ident: CR233 article-title: dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx578 – volume: 12 start-page: 2159 year: 2002 end-page: 2166 ident: CR226 article-title: Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01391-X – volume: 17 start-page: 425 year: 2009 end-page: 434 ident: CR203 article-title: A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in embryos publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.08.005 – volume: 11 start-page: 709 year: 2003 end-page: 719 ident: CR37 article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00092-3 – volume: 529 start-page: 418 year: 2016 end-page: 422 ident: CR170 article-title: Super-resolution imaging reveals distinct chromatin folding for different epigenetic states publication-title: Nature doi: 10.1038/nature16496 – volume: 33 start-page: 403 year: 2019 end-page: 417 ident: CR207 article-title: Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in publication-title: Genes Dev. doi: 10.1101/gad.321646.118 – volume: 537 start-page: 558 year: 2016 ident: 468_CR51 publication-title: Nature doi: 10.1038/nature19362 – volume: 17 start-page: 425 year: 2009 ident: 468_CR203 publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.08.005 – volume: 485 start-page: 376 year: 2012 ident: 468_CR11 publication-title: Nature doi: 10.1038/nature11082 – volume: 2 year: 2013 ident: 468_CR205 publication-title: eLife doi: 10.7554/eLife.00861 – volume: 109 start-page: 801 year: 2002 ident: 468_CR25 publication-title: Cell doi: 10.1016/S0092-8674(02)00798-5 – ident: 468_CR9 – volume: 175 start-page: 1716 year: 2018 ident: 468_CR157 publication-title: Cell doi: 10.1016/j.cell.2018.11.018 – volume: 21 year: 2020 ident: 468_CR163 publication-title: Genome Biol. doi: 10.1186/s13059-020-02201-1 – volume: 575 start-page: 229 year: 2019 ident: 468_CR179 publication-title: Nature doi: 10.1038/s41586-019-1668-3 – volume: 109 start-page: 745 year: 2002 ident: 468_CR121 publication-title: Cell doi: 10.1016/S0092-8674(02)00759-6 – volume: 151 start-page: 994 year: 2012 ident: 468_CR101 publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 38 start-page: 100942 year: 2020 ident: 468_CR5 publication-title: Mol. Metab. doi: 10.1016/j.molmet.2020.01.006 – volume: 20 start-page: 868 year: 2013 ident: 468_CR36 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2599 – volume: 28 start-page: 468 year: 2008 ident: 468_CR137 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01517-07 – volume: 136 start-page: 3531 year: 2009 ident: 468_CR75 publication-title: Development doi: 10.1242/dev.033902 – volume: 17 start-page: 2886 year: 1998 ident: 468_CR228 publication-title: EMBO J. doi: 10.1093/emboj/17.10.2886 – volume: 169 start-page: 780 year: 2017 ident: 468_CR166 publication-title: Cell doi: 10.1016/j.cell.2017.04.022 – volume: 153 start-page: 178 year: 2013 ident: 468_CR168 publication-title: Cell doi: 10.1016/j.cell.2013.02.028 – volume: 148 start-page: 558 year: 1972 ident: 468_CR8 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(72)90174-9 – volume: 573 start-page: 281 year: 2019 ident: 468_CR62 publication-title: Nature doi: 10.1038/s41586-019-1534-3 – volume: 294 start-page: 1331 year: 2001 ident: 468_CR38 publication-title: Science doi: 10.1126/science.1065683 – volume: 7 start-page: 747 year: 2012 ident: 468_CR197 publication-title: Epigenetics doi: 10.4161/epi.20584 – volume: 375 start-page: 681 year: 2022 ident: 468_CR190 publication-title: Science doi: 10.1126/science.abg7216 – volume: 34 start-page: 398 year: 2020 ident: 468_CR126 publication-title: Genes Dev. doi: 10.1101/gad.333542.119 – volume: 47 start-page: 1149 year: 2015 ident: 468_CR28 publication-title: Nat. Genet. doi: 10.1038/ng.3385 – volume: 154 start-page: 541 year: 2013 ident: 468_CR158 publication-title: Cell doi: 10.1016/j.cell.2013.06.051 – volume: 12 start-page: 2159 year: 2002 ident: 468_CR226 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01391-X – volume: 11 start-page: 1037 year: 2004 ident: 468_CR14 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb851 – volume: 361 start-page: 412 year: 2018 ident: 468_CR216 publication-title: Science doi: 10.1126/science.aar4199 – volume: 43 start-page: 7931 year: 2015 ident: 468_CR146 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv722 – year: 2021 ident: 468_CR188 publication-title: bioRxiv doi: 10.1101/2021.07.08.451691v1.full – volume: 537 start-page: 553 year: 2016 ident: 468_CR35 publication-title: Nature doi: 10.1038/nature19361 – volume: 75 start-page: 5 year: 1993 ident: 468_CR3 publication-title: Cell doi: 10.1016/S0092-8674(05)80078-9 – volume: 574 start-page: 575 year: 2019 ident: 468_CR106 publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 51 start-page: 192 year: 2019 ident: 468_CR177 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.08.004 – volume: 216 start-page: 1959 year: 2017 ident: 468_CR143 publication-title: J. Cell Biol. doi: 10.1083/jcb.201611135 – volume: 7 year: 2016 ident: 468_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms12284 – volume: 273 start-page: 5858 year: 1998 ident: 468_CR132 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.10.5858 – volume: 18 start-page: 548 year: 2017 ident: 468_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.47 – volume: 53 start-page: 551 year: 2021 ident: 468_CR87 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00821-2 – volume: 567 start-page: 414 year: 2019 ident: 468_CR59 publication-title: Nature doi: 10.1038/s41586-019-1016-7 – volume: 6 year: 2017 ident: 468_CR60 publication-title: eLife doi: 10.7554/eLife.23249 – volume: 596 start-page: 433 year: 2021 ident: 468_CR141 publication-title: Nature doi: 10.1038/s41586-021-03776-w – volume: 36 start-page: 153 year: 2009 ident: 468_CR15 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.07.027 – volume: 19 start-page: 229 year: 2018 ident: 468_CR93 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.119 – volume: 527 start-page: 389 year: 2015 ident: 468_CR135 publication-title: Nature doi: 10.1038/nature15401 – volume: 326 start-page: 289 year: 2009 ident: 468_CR10 publication-title: Science doi: 10.1126/science.1181369 – volume: 8 year: 2019 ident: 468_CR169 publication-title: eLife doi: 10.7554/eLife.49278 – volume: 63 start-page: 180 year: 2021 ident: 468_CR180 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2021.05.002 – volume: 290 start-page: 22612 year: 2015 ident: 468_CR64 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.661363 – volume: 16 start-page: 777 year: 2009 ident: 468_CR100 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1629 – volume: 19 year: 2018 ident: 468_CR128 publication-title: Genome Biol. doi: 10.1186/s13059-018-1483-4 – volume: 65 start-page: 432 year: 2017 ident: 468_CR171 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.009 – volume: 13 start-page: 436 year: 2012 ident: 468_CR1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3382 – volume: 3 year: 2014 ident: 468_CR206 publication-title: eLife doi: 10.7554/eLife.03737 – volume: 158 start-page: 673 year: 2014 ident: 468_CR29 publication-title: Cell doi: 10.1016/j.cell.2014.06.027 – volume: 21 year: 2020 ident: 468_CR46 publication-title: Genome Biol. doi: 10.1186/s13059-020-01957-w – volume: 4 year: 2018 ident: 468_CR208 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat6224 – volume: 448 start-page: 714 year: 2007 ident: 468_CR53 publication-title: Nature doi: 10.1038/nature05987 – volume: 72 start-page: 673 year: 2018 ident: 468_CR202 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.017 – volume: 11 start-page: 709 year: 2003 ident: 468_CR37 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00092-3 – volume: 102 start-page: 6344 year: 2005 ident: 468_CR67 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0502413102 – volume: 77 start-page: 857 year: 2020 ident: 468_CR80 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.12.001 – volume: 32 start-page: 224 year: 2018 ident: 468_CR149 publication-title: Genes Dev. doi: 10.1101/gad.306464.117 – volume: 179 start-page: 953 year: 2019 ident: 468_CR91 publication-title: Cell doi: 10.1016/j.cell.2019.10.009 – volume: 39 start-page: 6465 year: 2011 ident: 468_CR115 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr304 – volume: 52 start-page: 273 year: 2020 ident: 468_CR109 publication-title: Nat. Genet. doi: 10.1038/s41588-020-0586-5 – volume: 590 start-page: 660 year: 2021 ident: 468_CR134 publication-title: Nature doi: 10.1038/s41586-021-03193-z – volume: 33 start-page: 4166 year: 2013 ident: 468_CR153 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00689-13 – volume: 26 start-page: 2580 year: 2012 ident: 468_CR151 publication-title: Genes Dev. doi: 10.1101/gad.195636.112 – volume: 10 year: 2019 ident: 468_CR187 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09982-5 – volume: 294 start-page: 1451 year: 2019 ident: 468_CR85 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006620 – volume: 15 start-page: 1122 year: 2008 ident: 468_CR125 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1489 – volume: 464 start-page: 922 year: 2010 ident: 468_CR200 publication-title: Nature doi: 10.1038/nature08866 – volume: 372 start-page: 371 year: 2021 ident: 468_CR159 publication-title: Science doi: 10.1126/science.aba5545 – volume: 18 start-page: 1251 year: 2004 ident: 468_CR99 publication-title: Genes Dev. doi: 10.1101/gad.300704 – volume: 22 year: 2021 ident: 468_CR117 publication-title: EMBO Rep. doi: 10.15252/embr.202051009 – volume: 37 start-page: 109799 year: 2021 ident: 468_CR61 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109799 – volume: 51 start-page: 786 year: 1964 ident: 468_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.51.5.786 – volume: 30 start-page: 820 year: 2020 ident: 468_CR173 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.12.057 – volume: 58 start-page: 203 year: 2015 ident: 468_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.029 – volume: 55 start-page: 1 year: 2019 ident: 468_CR94 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2019.04.013 – volume: 146 start-page: dev181180 year: 2019 ident: 468_CR102 publication-title: Development doi: 10.1242/dev.181180 – volume: 49 start-page: 1647 year: 2017 ident: 468_CR45 publication-title: Nat. Genet. doi: 10.1038/ng.3965 – volume: 33 start-page: 799 year: 2019 ident: 468_CR84 publication-title: Genes Dev. doi: 10.1101/gad.326488.119 – volume: 547 start-page: 419 year: 2017 ident: 468_CR88 publication-title: Nature doi: 10.1038/nature23262 – volume: 4 year: 2013 ident: 468_CR114 publication-title: Nat. Commun. doi: 10.1038/ncomms3233 – volume: 10 start-page: 697 year: 2009 ident: 468_CR76 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2763 – volume: 172 start-page: 993 year: 2018 ident: 468_CR50 publication-title: Cell doi: 10.1016/j.cell.2018.01.022 – volume: 45 start-page: 9901 year: 2017 ident: 468_CR233 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx578 – volume: 38 start-page: 50 year: 2020 ident: 468_CR229 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0296-7 – volume: 55 start-page: 68 year: 2019 ident: 468_CR234 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.07.005 – volume: 567 start-page: 473 year: 2019 ident: 468_CR7 publication-title: Nature doi: 10.1038/s41586-019-1038-1 – volume: 459 start-page: 108 year: 2009 ident: 468_CR42 publication-title: Nature doi: 10.1038/nature07829 – volume: 127 start-page: 1361 year: 2006 ident: 468_CR138 publication-title: Cell doi: 10.1016/j.cell.2006.10.043 – volume: 279 start-page: 23859 year: 2004 ident: 468_CR72 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C400151200 – volume: 12 start-page: 2387 year: 2021 ident: 468_CR193 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22636-9 – volume: 111 start-page: 7096 year: 2014 ident: 468_CR144 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1324036111 – volume: 12 year: 2021 ident: 468_CR165 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24532-8 – volume: 6 year: 2015 ident: 468_CR183 publication-title: Nat. Commun. doi: 10.1038/ncomms7033 – volume: 66 start-page: 568 year: 2017 ident: 468_CR44 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.04.018 – volume: 7 start-page: 2006 year: 2014 ident: 468_CR142 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.026 – volume: 547 start-page: 236 year: 2017 ident: 468_CR220 publication-title: Nature doi: 10.1038/nature22822 – volume: 171 start-page: 85 year: 2017 ident: 468_CR178 publication-title: Cell doi: 10.1016/j.cell.2017.07.041 – volume: 583 start-page: 852 year: 2020 ident: 468_CR69 publication-title: Nature doi: 10.1038/s41586-020-2533-0 – volume: 361 year: 2018 ident: 468_CR217 publication-title: Science doi: 10.1126/science.aar2555 – volume: 3 year: 2014 ident: 468_CR113 publication-title: eLife doi: 10.7554/eLife.01632 – volume: 7 start-page: 1395 year: 1988 ident: 468_CR182 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02956.x – volume: 8 year: 2017 ident: 468_CR232 publication-title: Nat. Commun. doi: 10.1038/ncomms15315 – volume: 339 start-page: 698 year: 2013 ident: 468_CR78 publication-title: Science doi: 10.1126/science.1231382 – volume: 29 start-page: 1487 year: 2015 ident: 468_CR79 publication-title: Genes Dev. doi: 10.1101/gad.265439.115 – volume: 438 start-page: 1116 year: 2005 ident: 468_CR74 publication-title: Nature doi: 10.1038/nature04219 – volume: 33 start-page: 1619 year: 2019 ident: 468_CR223 publication-title: Genes Dev. doi: 10.1101/gad.331520.119 – volume: 547 start-page: 241 year: 2017 ident: 468_CR219 publication-title: Nature doi: 10.1038/nature22989 – volume: 37 start-page: 57 year: 2010 ident: 468_CR148 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.012 – volume: 117 start-page: 11459 year: 2020 ident: 468_CR164 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002068117 – volume: 361 year: 2018 ident: 468_CR215 publication-title: Science doi: 10.1126/science.aar3958 – year: 2021 ident: 468_CR130 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00628-6 – volume: 5 start-page: 917 year: 2000 ident: 468_CR65 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80257-9 – volume: 1 year: 2015 ident: 468_CR77 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500737 – volume: 22 year: 2021 ident: 468_CR120 publication-title: EMBO Rep. doi: 10.15252/embr.202152435 – volume: 20 start-page: 8866 year: 2000 ident: 468_CR18 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.23.8866-8878.2000 – volume: 23 start-page: 905 year: 2021 ident: 468_CR104 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00725-7 – volume: 22 year: 2021 ident: 468_CR20 publication-title: EMBO Rep. doi: 10.15252/embr.202152774 – volume: 11 year: 2020 ident: 468_CR70 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15084-4 – volume: 50 start-page: 1452 year: 2018 ident: 468_CR174 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0218-5 – volume: 12 year: 2021 ident: 468_CR235 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20672-5 – volume: 38 start-page: 452 year: 2010 ident: 468_CR83 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.032 – volume: 12 year: 2021 ident: 468_CR225 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26147-5 – volume: 20 start-page: 620 year: 2018 ident: 468_CR196 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – volume: 12 start-page: 401 year: 2015 ident: 468_CR230 publication-title: Nat. Methods doi: 10.1038/nmeth.3325 – volume: 31 start-page: 397 year: 2013 ident: 468_CR227 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 – volume: 18 start-page: 1263 year: 2004 ident: 468_CR123 publication-title: Genes Dev. doi: 10.1101/gad.1198204 – volume: 6 year: 2017 ident: 468_CR184 publication-title: eLife doi: 10.7554/eLife.21856 – volume: 17 start-page: 3155 year: 1998 ident: 468_CR19 publication-title: EMBO J. doi: 10.1093/emboj/17.11.3155 – volume: 8 year: 2013 ident: 468_CR98 publication-title: PLoS One doi: 10.1371/journal.pone.0051765 – volume: 5 year: 2014 ident: 468_CR195 publication-title: Nat. Commun. doi: 10.1038/ncomms6868 – volume: 280 start-page: 17732 year: 2005 ident: 468_CR54 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500796200 – volume: 6 year: 2015 ident: 468_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms10148 – volume: 65 start-page: 1023 year: 1991 ident: 468_CR17 publication-title: Cell doi: 10.1016/0092-8674(91)90554-C – volume: 76 start-page: 646 year: 2019 ident: 468_CR221 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.08.019 – volume: 21 start-page: 522 year: 2020 ident: 468_CR6 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0262-8 – volume: 107 start-page: 21931 year: 2010 ident: 468_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016071107 – volume: 537 start-page: 548 year: 2016 ident: 468_CR34 publication-title: Nature doi: 10.1038/nature19360 – volume: 100 start-page: 57 year: 2000 ident: 468_CR131 publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – volume: 27 start-page: 580 year: 2017 ident: 468_CR129 publication-title: Genome Res. doi: 10.1101/gr.217240.116 – volume: 51 start-page: 941 year: 2019 ident: 468_CR68 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0428-5 – volume: 27 start-page: 389 year: 2011 ident: 468_CR26 publication-title: Trends Genet. doi: 10.1016/j.tig.2011.06.006 – volume: 56 start-page: 671 year: 2021 ident: 468_CR41 publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.01.014 – volume: 73 start-page: 238 year: 2019 ident: 468_CR186 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.046 – volume: 19 year: 2021 ident: 468_CR127 publication-title: BMC Biol. doi: 10.1186/s12915-021-01017-0 – volume: 410 start-page: 120 year: 2001 ident: 468_CR95 publication-title: Nature doi: 10.1038/35065138 – volume: 311 start-page: 844 year: 2006 ident: 468_CR13 publication-title: Science doi: 10.1126/science.1124000 – volume: 138 start-page: 1122 year: 2009 ident: 468_CR66 publication-title: Cell doi: 10.1016/j.cell.2009.07.031 – volume: 16 start-page: 258 year: 2015 ident: 468_CR16 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3931 – volume: 152 start-page: 859 year: 2013 ident: 468_CR116 publication-title: Cell doi: 10.1016/j.cell.2013.01.032 – volume: 410 start-page: 116 year: 2001 ident: 468_CR96 publication-title: Nature doi: 10.1038/35065132 – volume: 78 start-page: 236 year: 2020 ident: 468_CR222 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.005 – volume: 131 start-page: 58 year: 2007 ident: 468_CR30 publication-title: Cell doi: 10.1016/j.cell.2007.08.016 – volume: 150 start-page: 934 year: 2012 ident: 468_CR167 publication-title: Cell doi: 10.1016/j.cell.2012.06.051 – volume: 2 start-page: 470 year: 2012 ident: 468_CR63 publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.08.016 – volume: 523 start-page: 240 year: 2015 ident: 468_CR176 publication-title: Nature doi: 10.1038/nature14450 – volume: 10 year: 2019 ident: 468_CR201 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09582-3 – volume: 408 start-page: 187 year: 2011 ident: 468_CR111 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.01.003 – volume: 12 year: 2021 ident: 468_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26065-6 – volume: 26 start-page: 9185 year: 2006 ident: 468_CR55 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01529-06 – volume: 567 start-page: 535 year: 2019 ident: 468_CR107 publication-title: Nature doi: 10.1038/s41586-019-1024-7 – volume: 350 start-page: aab2006 year: 2015 ident: 468_CR40 publication-title: Science doi: 10.1126/science.aab2006 – volume: 21 start-page: 311 year: 2019 ident: 468_CR140 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0282-9 – volume: 33 start-page: 510 year: 2015 ident: 468_CR231 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3199 – volume: 77 start-page: 840 year: 2020 ident: 468_CR81 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.021 – volume: 357 start-page: 212 year: 2017 ident: 468_CR89 publication-title: Science doi: 10.1126/science.aam5339 – volume: 210 start-page: 969 year: 2018 ident: 468_CR211 publication-title: Genetics doi: 10.1534/genetics.118.301353 – volume: 53 start-page: 539 year: 2021 ident: 468_CR86 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00820-3 – volume: 499 start-page: 50 year: 2013 ident: 468_CR139 publication-title: Nature doi: 10.1038/nature12318 – volume: 484 start-page: 115 year: 2012 ident: 468_CR150 publication-title: Nature doi: 10.1038/nature10956 – volume: 10 year: 2019 ident: 468_CR124 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10844-3 – volume: 21 start-page: 993 year: 2011 ident: 468_CR199 publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.10.008 – volume: 441 start-page: 840 year: 2006 ident: 468_CR33 publication-title: Nature doi: 10.1038/nature04785 – volume: 1863 start-page: 194567 year: 2020 ident: 468_CR48 publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2020.194567 – volume: 25 start-page: 3305 year: 2005 ident: 468_CR56 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.8.3305-3316.2005 – volume: 306 start-page: 1574 year: 2004 ident: 468_CR82 publication-title: Science doi: 10.1126/science.1100576 – volume: 76 start-page: 909 year: 2019 ident: 468_CR23 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.029 – volume: 12 start-page: 46 year: 2005 ident: 468_CR110 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb869 – volume: 77 start-page: 825 year: 2020 ident: 468_CR172 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.011 – volume: 76 start-page: 660 year: 2019 ident: 468_CR118 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.08.018 – volume: 20 start-page: 199 year: 2005 ident: 468_CR71 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.08.032 – volume: 12 start-page: 1086 year: 2010 ident: 468_CR152 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2113 – volume: 365 start-page: 353 year: 2019 ident: 468_CR194 publication-title: Science doi: 10.1126/science.aaw5118 – volume: 123 start-page: 581 year: 2005 ident: 468_CR57 publication-title: Cell doi: 10.1016/j.cell.2005.10.023 – volume: 577 start-page: 576 year: 2020 ident: 468_CR154 publication-title: Nature doi: 10.1038/s41586-019-1877-9 – volume: 150 start-page: 1182 year: 2012 ident: 468_CR136 publication-title: Cell doi: 10.1016/j.cell.2012.08.005 – volume: 129 start-page: 823 year: 2007 ident: 468_CR181 publication-title: Cell doi: 10.1016/j.cell.2007.05.009 – volume: 243 start-page: 707 year: 1968 ident: 468_CR24 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)81723-4 – volume: 20 start-page: 283 year: 2019 ident: 468_CR27 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0105-7 – volume: 39 start-page: 886 year: 2010 ident: 468_CR73 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.08.020 – volume: 33 start-page: 403 year: 2019 ident: 468_CR207 publication-title: Genes Dev. doi: 10.1101/gad.321646.118 – volume: 55 start-page: 347 year: 2014 ident: 468_CR92 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.06.005 – volume: 21 start-page: 287 year: 2019 ident: 468_CR191 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0248-3 – volume: 515 start-page: 402 year: 2014 ident: 468_CR160 publication-title: Nature doi: 10.1038/nature13986 – volume: 505 start-page: 564 year: 2014 ident: 468_CR119 publication-title: Nature doi: 10.1038/nature12819 – volume: 11 year: 2020 ident: 468_CR204 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17238-w – volume: 10 year: 2019 ident: 468_CR147 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09175-0 – volume: 23 start-page: 1163 year: 2021 ident: 468_CR212 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00776-w – volume: 579 start-page: 592 year: 2020 ident: 468_CR224 publication-title: Nature doi: 10.1038/s41586-020-2097-z – volume: 32 start-page: 42 year: 2016 ident: 468_CR122 publication-title: Trends Genet. doi: 10.1016/j.tig.2015.10.007 – volume: 22 start-page: 767 year: 2020 ident: 468_CR105 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0536-6 – year: 2021 ident: 468_CR192 publication-title: bioRxiv doi: 10.1101/2021.07.06.451383v1 – volume: 368 start-page: 197 year: 2020 ident: 468_CR108 publication-title: Science doi: 10.1126/science.aaw8806 – volume: 45 start-page: 169 year: 2017 ident: 468_CR156 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw848 – volume: 570 start-page: 395 year: 2019 ident: 468_CR162 publication-title: Nature doi: 10.1038/s41586-019-1275-3 – volume: 355 start-page: 227 year: 2011 ident: 468_CR209 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.04.010 – volume: 10 year: 2019 ident: 468_CR210 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09141-w – volume: 41 start-page: 67 year: 2011 ident: 468_CR97 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.12.016 – volume: 327 start-page: 996 year: 2010 ident: 468_CR58 publication-title: Science doi: 10.1126/science.1184208 – volume: 43 start-page: 2560 year: 2015 ident: 468_CR155 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv090 – volume: 31 start-page: 1230 year: 2021 ident: 468_CR175 publication-title: Genome Res. doi: 10.1101/gr.273771.120 – volume: 183 start-page: 1772 year: 2020 ident: 468_CR218 publication-title: Cell doi: 10.1016/j.cell.2020.11.027 – volume: 529 start-page: 418 year: 2016 ident: 468_CR170 publication-title: Nature doi: 10.1038/nature16496 – volume: 25 start-page: 73 year: 2018 ident: 468_CR52 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0013-5 – volume: 35 start-page: 330 year: 2019 ident: 468_CR133 publication-title: Trends Genet. doi: 10.1016/j.tig.2019.02.003 – volume: 19 start-page: 789 year: 2018 ident: 468_CR161 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0060-8 – volume: 40 start-page: 10215 year: 2012 ident: 468_CR112 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks747 – volume: 111 start-page: 9169 year: 2014 ident: 468_CR145 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1403565111 – volume: 152 start-page: 1021 year: 2013 ident: 468_CR31 publication-title: Cell doi: 10.1016/j.cell.2013.01.052 – volume: 21 start-page: 737 year: 2020 ident: 468_CR4 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0270-8 – volume: 81 start-page: 4736 year: 2021 ident: 468_CR189 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.09.019 – volume: 363 start-page: 294 year: 2019 ident: 468_CR103 publication-title: Science doi: 10.1126/science.aau0583 – volume: 31 start-page: 1351 year: 2021 ident: 468_CR213 publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.03.002 – volume: 146 start-page: 1016 year: 2011 ident: 468_CR21 publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 63 start-page: 1066 year: 2016 ident: 468_CR198 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.032 – volume: 356 year: 2017 ident: 468_CR90 publication-title: Science doi: 10.1126/science.aai8236 – volume: 126 year: 2019 ident: 468_CR185 publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/cpmb.85 – volume: 179 start-page: 470 year: 2019 ident: 468_CR214 publication-title: Cell doi: 10.1016/j.cell.2019.08.037 – volume: 21 start-page: 135 year: 2017 ident: 468_CR39 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.03.003 |
| SSID | ssj0016173 |
| Score | 2.7482085 |
| SecondaryResourceType | review_article |
| Snippet | Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 563 |
| SubjectTerms | 631/208/176 631/208/177 631/208/200 631/337/100/2285 631/45/147 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Deoxyribonucleic acid DNA DNA - genetics DNA biosynthesis DNA Repair DNA Replication Gene Function Gene mapping Genomes Histones Histones - genetics Histones - metabolism Human Genetics Post-translation Protein Processing, Post-Translational Recombination Review Article Translation |
| Title | Histone post-translational modifications — cause and consequence of genome function |
| URI | https://link.springer.com/article/10.1038/s41576-022-00468-7 https://www.ncbi.nlm.nih.gov/pubmed/35338361 https://www.proquest.com/docview/2703231076 https://www.proquest.com/docview/2644006577 |
| Volume | 23 |
| WOSCitedRecordID | wos000773186600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yaCGXNn2lm8eiQG-tyFpeW_IppCEhp2UJTdib0ctQSOxt7C301h_RX9hf0hlZu0sJzaUXXSzLsmc0b38D8METBIgpDM9FkvKxcHikUp9ztO2t0NroTLvQbEJOJmo2K6Yx4NbGssqlTAyC2jWWYuQnAlmTbBGZn86_ceoaRdnV2EJjE7YJJUGE0r3pKouQ9xnmBAUwJ8zL-NPMKFUnLSouSeW3gpOLqLj8WzE9sjYfZUqDArp8-b9b34UX0fRkZz2vvIINX7-G530zyh9v4CYghtSezZu24x3psLsYKWT3jaOSoj66x37__MWsXrSe6doxu67HZk3FCPT13jPSlzT7LdxcXnw5v-Kx6QK3aBl13GphksJaIb1SKPtUZkUxrtBsGvlMOm0NitYCCexzV1XSeOed1QqtAInqHl3ed7BV42bfAxuZcaLRfzMEoZNlSmXGe49uq3XkplUDSJZfvLQRkZwaY9yVITOeqrKnUolUKgOVSjmAj6t75j0ex5OzD5cUKePZbMs1OQZwvLqMp4pSJbr2zQLn0PuidSZxib2eAVaPSzNy6_NkAJ-WHLFe_N972X96LwewIwI3UvnaIWx1Dwt_BM_s9-5r-zCETXl9S-NMhlHhqM6TIWx_vphMr4eB7_8AfAMCLg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VAioX_ikLBYwEJ7C6cTaxc0AIFapWLSsOrdSb8V8kpDZZmiyoNx6C5-CheBJmnGRXqKK3HjjHcez4m__xDMCLQCVAbGF5LpKUT4RHkkpDzlG3d8IYazLjY7MJOZ2qo6Pi0wr8Gu7CUFrlwBMjo_a1Ix_5pkBoki4i87ezr5y6RlF0dWih0cFiL5x9R5OtebP7Hs_3pRDbHw62dnjfVYA7FP0td0bYpHBOyKAUErfKnCgmJeoF45BJb5xF3lHgDkLuy1La4IN3RqGYkyjP0KbDea_AVapkRxSlthYpJWQqxIR-HMWpxmZ_SWecqs0GBaWkdF_BySRVXP4tCM9pt-cis1Hgbd_6337VbbjZq9bsXUcLd2AlVHfhetds8-weHMaKKFVgs7ppeUsy-rj3hLKT2lPKVOe9ZL9__GTOzJvATOWZW-abs7pkVNT2JDDSB2j0fTi8lD09gNUKF_sQ2NhOEoP2qaUSQVmmVGZDCGiWO09maDmCZDhh7fqK69T441jHyH-qdIcKjajQERVajuDV4p1ZV2_kwtEbAwJ0z3savTz-ETxfPEauQaEgU4V6jmNov6h9SpxivQPc4nNpRm6LPBnB6wGBy8n_vZZHF6_lGaztHHzc1_u7073HcENESqBUvQ1YbU_n4Qlcc9_aL83p00hTDD5fNjL_APMnWz4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB8LBYwEJ7B242xi54AQ0K6oilYrRKXeXL8iIbXJ0mRBvfEj-DX8HH4JM3nsClX01gPnOI6dfDPzjWcyA_A8UAkQm1meiijmE-FRpOKQcuT2ThhjTWJ802xCzmbq4CCbb8Cv_l8YSqvsdWKjqH3p6Ix8JBCaxEVkOsq7tIj59vTN4iunDlIUae3babQQ2Qun39F9q17vbuO3fiHEdOfz-w-86zDAHdKAmjsjbJQ5J2RQCgVdJU5kkxw5wjgk0htnUY9kuJuQ-jyXNvjgnVFo8iTaNvTvcN5LsCmRZEwGsPluZzb_tIphpG18O8JxnCpudr_sjGM1qtBsSkr-FZwcVMXl32bxDNc9E6dtzN_0xv_84m7C9Y50s7etlNyCjVDchittG87TO7Df1EopAluUVc1rst5H3RkpOy49JVO155rs94-fzJllFZgpPHPrTHRW5ozK3R4HRkyBRt-F_QvZ0z0YFLjYB8DGdhIZ9FwtFQ9KEqUSG0JAh915clDzIUT919auq8VOLUGOdJMTECvdIkQjQnSDEC2H8HJ1z6KtRHLu6K0eDbrTSpVeQ2EIz1aXUZ9QkMgUoVziGNov8lKJU9xvwbd6XJzQgUYaDeFVj8b15P9ey8Pz1_IUriIg9cfd2d4juCYaoaAcvi0Y1CfL8Bguu2_1l-rkSSdgDA4vGpp_AJtKZZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+post-translational+modifications+-+cause+and+consequence+of+genome+function&rft.jtitle=Nature+reviews.+Genetics&rft.au=Mill%C3%A1n-Zambrano%2C+Gonzalo&rft.au=Burton%2C+Adam&rft.au=Bannister%2C+Andrew+J&rft.au=Schneider%2C+Robert&rft.date=2022-09-01&rft.eissn=1471-0064&rft.volume=23&rft.issue=9&rft.spage=563&rft_id=info:doi/10.1038%2Fs41576-022-00468-7&rft_id=info%3Apmid%2F35338361&rft.externalDocID=35338361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |