Histone post-translational modifications — cause and consequence of genome function

Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-w...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Genetics Vol. 23; no. 9; pp. 563 - 580
Main Authors: Millán-Zambrano, Gonzalo, Burton, Adam, Bannister, Andrew J., Schneider, Robert
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.09.2022
Nature Publishing Group
Subjects:
ISSN:1471-0056, 1471-0064, 1471-0064
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented. Histone post-translational modifications (PTMs) have been mainly regarded as instructing DNA-templated processes. In this Review, Gonzalo Millán-Zambrano and colleagues describe how histone PTMs both affect and are affected by these DNA processes and should be viewed as components of a complex genome-regulating network.
AbstractList Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented. Histone post-translational modifications (PTMs) have been mainly regarded as instructing DNA-templated processes. In this Review, Gonzalo Millán-Zambrano and colleagues describe how histone PTMs both affect and are affected by these DNA processes and should be viewed as components of a complex genome-regulating network.
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.Histone post-translational modifications (PTMs) have been mainly regarded as instructing DNA-templated processes. In this Review, Gonzalo Millán-Zambrano and colleagues describe how histone PTMs both affect and are affected by these DNA processes and should be viewed as components of a complex genome-regulating network.
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Author Millán-Zambrano, Gonzalo
Schneider, Robert
Bannister, Andrew J.
Burton, Adam
Author_xml – sequence: 1
  givenname: Gonzalo
  orcidid: 0000-0002-4530-6359
  surname: Millán-Zambrano
  fullname: Millán-Zambrano, Gonzalo
  organization: Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Departamento de Genética, Facultad de Biología, Universidad de Sevilla
– sequence: 2
  givenname: Adam
  surname: Burton
  fullname: Burton, Adam
  organization: Institute of Epigenetics and Stem Cells, Helmholtz Center Munich
– sequence: 3
  givenname: Andrew J.
  surname: Bannister
  fullname: Bannister, Andrew J.
  email: a.bannister@gurdon.cam.ac.uk
  organization: Gurdon Institute and Department of Pathology, University of Cambridge
– sequence: 4
  givenname: Robert
  orcidid: 0000-0001-5303-0973
  surname: Schneider
  fullname: Schneider, Robert
  email: robert.schneider@helmholtz-muenchen.de
  organization: Institute of Functional Epigenetics, Helmholtz Center Munich, Faculty of Biology, Ludwig Maximilian University (LMU) of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35338361$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOwzAUhi0EgrbwAgzIEgtLwLfY7ogQNwmJhc6Wa5-goMQucTKw8RA8IU-C20KROnSyz9H3n9s_RvshBkDolJJLSri-SoKWShaEsYIQIXWh9tCICkVzKMX-5l_KIzRO6Y0QKqnih-iIl5xrLukIzR7q1OeyeBFTX_SdDamxfR2DbXAbfV3VbhUm_P35hZ0dEmAbPHY5Be8DBAc4VvgVQmwBV0NwS_oYHVS2SXDy-07Q7O725eaheHq-f7y5fiqcELQvnGVzOnWOKdDae9ClY1NRSSEIlMpbNxdSTadCg_RVpebgwTurS0YVYXk3PkEX67qLLuZhUm_aOjloGhsgDsmwZSkiS6Uyer6FvsWhy2tmShHOOCVKZurslxrmLXiz6OrWdh_m72AZYGvAdTGlDqoNQolZumLWrpjsilm5Ypa99ZbI1f3qrPngdbNbytfSlPuEV-j-x96h-gEK06Hs
CitedBy_id crossref_primary_10_1080_17501911_2024_2447811
crossref_primary_10_1038_s41467_025_57384_7
crossref_primary_10_1111_cns_14649
crossref_primary_10_1039_D5AN00357A
crossref_primary_10_1038_s41420_024_02240_8
crossref_primary_10_3390_ijms252212136
crossref_primary_10_3389_fcell_2024_1535839
crossref_primary_10_3389_fcell_2025_1572405
crossref_primary_10_1016_j_ymeth_2023_07_010
crossref_primary_10_3390_ijms252010982
crossref_primary_10_1017_S0967199424000224
crossref_primary_10_1111_cns_70471
crossref_primary_10_1016_j_molcel_2025_02_016
crossref_primary_10_3390_cells13141189
crossref_primary_10_1038_s41392_025_02340_6
crossref_primary_10_1360_SSV_2025_0142
crossref_primary_10_1002_adhm_202402209
crossref_primary_10_1016_j_jare_2024_11_037
crossref_primary_10_1083_jcb_202303141
crossref_primary_10_1016_j_intimp_2024_113968
crossref_primary_10_1146_annurev_physchem_090722_010601
crossref_primary_10_1186_s12964_025_02327_4
crossref_primary_10_1002_med_22096
crossref_primary_10_1172_JCI184656
crossref_primary_10_1038_s41392_025_02220_z
crossref_primary_10_1038_s42003_024_06579_7
crossref_primary_10_1080_10406638_2022_2080728
crossref_primary_10_1002_mco2_70226
crossref_primary_10_3389_fcell_2022_991980
crossref_primary_10_3390_ijms25147851
crossref_primary_10_1038_s41467_024_53717_0
crossref_primary_10_1093_jleuko_qiaf092
crossref_primary_10_7554_eLife_103953
crossref_primary_10_1016_j_gpb_2023_06_003
crossref_primary_10_1021_jacs_4c14136
crossref_primary_10_1093_nar_gkae1227
crossref_primary_10_1016_j_arr_2025_102788
crossref_primary_10_3390_cancers15154005
crossref_primary_10_1007_s00359_023_01673_3
crossref_primary_10_1038_s41467_023_36898_y
crossref_primary_10_1136_jmg_2022_109085
crossref_primary_10_1111_tpj_70040
crossref_primary_10_1002_1873_3468_14981
crossref_primary_10_3390_molecules28073043
crossref_primary_10_1089_ars_2023_0253
crossref_primary_10_1080_17501911_2024_2387527
crossref_primary_10_1016_j_cbd_2025_101513
crossref_primary_10_1016_j_celrep_2024_115148
crossref_primary_10_3389_fcell_2024_1383200
crossref_primary_10_1016_j_tranon_2024_102166
crossref_primary_10_1016_j_tig_2025_01_003
crossref_primary_10_1186_s12929_025_01146_6
crossref_primary_10_3389_fimmu_2024_1495221
crossref_primary_10_1002_advs_202405352
crossref_primary_10_1016_j_dnarep_2024_103702
crossref_primary_10_1016_j_jia_2024_06_018
crossref_primary_10_1111_cas_16321
crossref_primary_10_3389_fgene_2023_1320185
crossref_primary_10_1038_s41398_023_02415_4
crossref_primary_10_1080_07391102_2022_2135600
crossref_primary_10_1186_s13059_024_03408_2
crossref_primary_10_1186_s13578_024_01265_x
crossref_primary_10_1007_s42764_024_00135_7
crossref_primary_10_1186_s12967_024_05169_9
crossref_primary_10_1016_j_yexcr_2025_114648
crossref_primary_10_3390_biology14080917
crossref_primary_10_1093_plphys_kiae333
crossref_primary_10_1016_j_jare_2024_11_010
crossref_primary_10_1016_j_tcb_2023_07_011
crossref_primary_10_1038_s41392_024_02095_6
crossref_primary_10_1002_mco2_70369
crossref_primary_10_1002_cbic_202200468
crossref_primary_10_1080_17501911_2024_2377947
crossref_primary_10_1186_s12935_025_03797_9
crossref_primary_10_1016_j_canlet_2025_217972
crossref_primary_10_1016_j_bbcan_2024_189099
crossref_primary_10_1016_j_taap_2024_117216
crossref_primary_10_1038_s41467_024_55165_2
crossref_primary_10_1016_j_xgen_2025_100985
crossref_primary_10_1016_j_molmet_2025_102197
crossref_primary_10_3389_fcvm_2023_1184030
crossref_primary_10_1016_j_bbagrm_2023_194990
crossref_primary_10_1016_j_jot_2025_06_007
crossref_primary_10_3389_fimmu_2025_1531246
crossref_primary_10_1360_SSV_2025_0106
crossref_primary_10_1016_j_micres_2023_127552
crossref_primary_10_1016_j_bioorg_2024_107887
crossref_primary_10_1128_jvi_01695_23
crossref_primary_10_1016_j_bbcan_2023_188931
crossref_primary_10_1016_j_freeradbiomed_2024_04_237
crossref_primary_10_1039_D4RA05488A
crossref_primary_10_3390_cancers16162843
crossref_primary_10_3389_fendo_2023_1229862
crossref_primary_10_1016_j_jbc_2023_105131
crossref_primary_10_1016_j_ymthe_2025_04_027
crossref_primary_10_1111_cns_14610
crossref_primary_10_1016_j_coph_2025_102505
crossref_primary_10_1038_s41390_024_03167_7
crossref_primary_10_1038_s41576_023_00664_z
crossref_primary_10_1016_j_micres_2023_127440
crossref_primary_10_1038_s41392_024_02039_0
crossref_primary_10_1007_s10142_023_01219_5
crossref_primary_10_1007_s42764_023_00108_2
crossref_primary_10_1016_j_tcb_2024_08_005
crossref_primary_10_1016_j_bbcan_2025_189337
crossref_primary_10_1016_j_biopha_2023_115938
crossref_primary_10_1007_s10555_023_10089_z
crossref_primary_10_3892_or_2025_8950
crossref_primary_10_1042_BST20230877
crossref_primary_10_3390_ijms232012698
crossref_primary_10_1002_prp2_1171
crossref_primary_10_1016_j_jbc_2024_107776
crossref_primary_10_1002_pmic_202300650
crossref_primary_10_1186_s11658_024_00662_x
crossref_primary_10_1016_j_jmb_2024_168453
crossref_primary_10_1093_plphys_kiae024
crossref_primary_10_1016_j_drup_2024_101152
crossref_primary_10_1038_s41467_023_40843_4
crossref_primary_10_1038_s41392_024_01918_w
crossref_primary_10_1016_j_molcel_2024_10_034
crossref_primary_10_1016_j_molcel_2024_10_035
crossref_primary_10_1186_s13059_024_03308_5
crossref_primary_10_1016_j_bbagrm_2023_194968
crossref_primary_10_1038_s41423_023_01109_7
crossref_primary_10_1007_s10815_024_03301_8
crossref_primary_10_3390_livers4040040
crossref_primary_10_1016_j_allmed_2025_100064
crossref_primary_10_1016_j_cellsig_2024_111502
crossref_primary_10_1080_10409238_2024_2318547
crossref_primary_10_1038_s41380_025_03056_3
crossref_primary_10_3390_ijms26083577
crossref_primary_10_1093_fqsafe_fyad052
crossref_primary_10_3390_cancers16050991
crossref_primary_10_3390_ijms24054820
crossref_primary_10_3390_ijms241612879
crossref_primary_10_1016_j_bbapap_2024_141017
crossref_primary_10_1007_s12016_024_09014_1
crossref_primary_10_1002_mco2_70322
crossref_primary_10_1007_s12013_024_01587_0
crossref_primary_10_1021_acs_biochem_4c00647
crossref_primary_10_1038_s12276_023_01145_3
crossref_primary_10_1016_j_bbcan_2025_189356
crossref_primary_10_1016_j_tcb_2024_03_003
crossref_primary_10_1161_HYPERTENSIONAHA_123_21755
crossref_primary_10_1016_j_microc_2025_114118
crossref_primary_10_1007_s12672_025_02920_6
crossref_primary_10_3389_fonc_2023_1264090
crossref_primary_10_5483_BMBRep_2024_0175
crossref_primary_10_1097_JN9_0000000000000048
crossref_primary_10_1186_s13059_024_03209_7
crossref_primary_10_1007_s44297_023_00003_y
crossref_primary_10_3390_ijms26136371
crossref_primary_10_1038_s41467_024_53981_0
crossref_primary_10_3390_cancers16122164
crossref_primary_10_1016_j_gene_2024_148218
crossref_primary_10_1093_nar_gkaf816
crossref_primary_10_1093_burnst_tkae033
crossref_primary_10_3389_fgene_2023_1243395
crossref_primary_10_3389_fphar_2024_1523779
crossref_primary_10_3390_genes16010045
crossref_primary_10_1016_j_canlet_2023_216128
crossref_primary_10_1186_s12870_024_05318_8
crossref_primary_10_3390_ijms25116168
crossref_primary_10_1002_pmic_202400238
crossref_primary_10_1111_imr_13317
crossref_primary_10_1186_s13046_024_03021_y
crossref_primary_10_1093_nar_gkae1053
crossref_primary_10_1016_j_pharmthera_2024_108732
crossref_primary_10_3390_cells12101357
crossref_primary_10_1016_j_ymgme_2024_108540
crossref_primary_10_1002_mco2_173
crossref_primary_10_1089_ars_2023_0524
crossref_primary_10_3389_fcell_2024_1331074
crossref_primary_10_1016_j_molcel_2024_02_002
crossref_primary_10_1111_jfb_70203
crossref_primary_10_1097_HCO_0000000000001150
crossref_primary_10_1111_nph_19357
crossref_primary_10_1631_jzus_B2400032
crossref_primary_10_1091_mbc_E23_04_0147
crossref_primary_10_3390_ijms252111384
crossref_primary_10_1038_s41392_023_01655_6
crossref_primary_10_1186_s13578_023_00996_7
crossref_primary_10_3389_freae_2023_1195690
crossref_primary_10_3390_ijms26062405
crossref_primary_10_1016_j_lfs_2023_122383
crossref_primary_10_1038_s41392_025_02163_5
crossref_primary_10_1093_g3journal_jkad021
crossref_primary_10_1016_j_tcb_2025_02_010
crossref_primary_10_1016_j_bbagrm_2024_195021
crossref_primary_10_1101_gad_351444_123
crossref_primary_10_1210_endocr_bqae055
crossref_primary_10_1038_s44318_024_00212_3
crossref_primary_10_3389_fgene_2022_1027726
crossref_primary_10_1080_17501911_2025_2548758
crossref_primary_10_3390_biology12040567
crossref_primary_10_1002_wcms_1728
crossref_primary_10_1016_j_biocel_2025_106739
crossref_primary_10_1158_1541_7786_MCR_24_0744
crossref_primary_10_3390_epigenomes8030036
crossref_primary_10_1016_j_neuron_2024_11_006
crossref_primary_10_1080_19491034_2025_2516909
crossref_primary_10_1038_s41467_025_61586_4
crossref_primary_10_3390_biology12040561
crossref_primary_10_1016_j_trecan_2024_08_004
crossref_primary_10_1016_j_ecoenv_2025_118193
crossref_primary_10_3389_fcell_2022_1115903
crossref_primary_10_1016_j_bbcan_2024_189240
crossref_primary_10_1016_j_jbc_2023_104938
crossref_primary_10_1016_j_ejmech_2023_116057
crossref_primary_10_3389_fnmol_2024_1456052
crossref_primary_10_1007_s11010_025_05366_0
crossref_primary_10_1038_s44277_025_00041_0
crossref_primary_10_1002_em_22626
crossref_primary_10_1007_s11427_024_2676_y
crossref_primary_10_1016_j_ymthe_2024_08_001
crossref_primary_10_3389_fonc_2025_1557162
crossref_primary_10_1038_s44319_025_00497_3
crossref_primary_10_1007_s13237_025_00542_5
crossref_primary_10_1084_jem_20240829
crossref_primary_10_1093_genetics_iyad196
crossref_primary_10_1007_s00018_024_05206_2
crossref_primary_10_1016_j_ejmech_2024_116884
crossref_primary_10_3389_fcvm_2024_1355980
crossref_primary_10_1186_s12967_025_06856_x
crossref_primary_10_17533_udea_iatreia_330
crossref_primary_10_1016_j_exphem_2025_104858
crossref_primary_10_3389_fonc_2025_1549477
crossref_primary_10_1016_j_cmet_2024_11_005
crossref_primary_10_1016_j_jare_2025_07_003
crossref_primary_10_1073_pnas_2401861121
crossref_primary_10_1016_j_fochms_2025_100294
crossref_primary_10_3389_fendo_2023_1133970
crossref_primary_10_1186_s13072_024_00526_w
crossref_primary_10_1371_journal_pcbi_1012755
crossref_primary_10_1080_14787210_2024_2420329
crossref_primary_10_1242_dev_201989
crossref_primary_10_1186_s43094_023_00573_2
crossref_primary_10_3389_fimmu_2024_1523034
crossref_primary_10_1016_j_cej_2022_141020
crossref_primary_10_1016_j_prp_2023_154850
crossref_primary_10_3390_proteomes13020022
crossref_primary_10_3389_fgene_2025_1553406
crossref_primary_10_1186_s13046_023_02789_9
crossref_primary_10_20517_cdr_2025_69
crossref_primary_10_3389_fmicb_2024_1484455
crossref_primary_10_1016_j_isci_2025_112092
crossref_primary_10_1038_s41586_024_08371_3
crossref_primary_10_1073_pnas_2413346122
crossref_primary_10_1210_endrev_bnad020
crossref_primary_10_1016_j_cytogfr_2023_08_002
crossref_primary_10_1186_s13148_024_01762_3
crossref_primary_10_1007_s13402_024_00976_0
crossref_primary_10_1016_j_jri_2024_104311
crossref_primary_10_1016_j_tips_2025_05_011
crossref_primary_10_1038_s44324_024_00047_w
crossref_primary_10_1016_j_chroma_2024_465368
crossref_primary_10_1186_s12864_024_10602_w
crossref_primary_10_1016_j_cell_2023_01_007
crossref_primary_10_1016_j_scib_2025_09_013
crossref_primary_10_1093_nar_gkae504
crossref_primary_10_1042_CS20242737
crossref_primary_10_1021_acs_jcim_5c00498
crossref_primary_10_1093_icb_icaf040
crossref_primary_10_1038_s42003_025_08207_4
crossref_primary_10_3390_toxics11010072
crossref_primary_10_17816_MAJ632018
crossref_primary_10_1038_s41392_022_01055_2
crossref_primary_10_1016_j_critrevonc_2024_104573
crossref_primary_10_1186_s13148_024_01773_0
crossref_primary_10_1371_journal_pone_0313255
crossref_primary_10_1016_j_neuroscience_2025_03_058
crossref_primary_10_1016_j_sbi_2024_102865
crossref_primary_10_1038_s41598_025_85766_w
crossref_primary_10_1038_s41392_025_02266_z
crossref_primary_10_1093_genetics_iyae138
crossref_primary_10_1093_narmme_ugaf026
crossref_primary_10_3389_fnmol_2024_1405415
crossref_primary_10_1002_1873_3468_14847
crossref_primary_10_1080_14728222_2024_2375372
crossref_primary_10_1016_j_neuron_2025_06_016
crossref_primary_10_1186_s13045_024_01545_6
crossref_primary_10_1016_j_canlet_2025_217804
crossref_primary_10_1038_s42003_024_07211_4
crossref_primary_10_1289_EHP12956
crossref_primary_10_1016_j_tig_2025_07_012
crossref_primary_10_1016_j_bbadis_2024_167247
crossref_primary_10_1016_j_bbadis_2025_167664
crossref_primary_10_1007_s00018_024_05209_z
crossref_primary_10_1016_j_plantsci_2023_111920
crossref_primary_10_1007_s00299_024_03153_7
crossref_primary_10_3390_ijms25137073
crossref_primary_10_1007_s42994_025_00223_6
crossref_primary_10_1016_j_tibs_2023_08_003
crossref_primary_10_1093_nar_gkae1161
crossref_primary_10_1016_j_phrs_2024_107247
crossref_primary_10_3390_ijms25105424
crossref_primary_10_1002_ardp_202400437
crossref_primary_10_1093_nar_gkaf899
crossref_primary_10_3748_wjg_v29_i41_5618
crossref_primary_10_1126_sciadv_adu3308
crossref_primary_10_1007_s12032_023_02058_x
crossref_primary_10_1093_jxb_erae474
crossref_primary_10_1016_j_trac_2024_117658
crossref_primary_10_3390_antiox12081520
crossref_primary_10_1016_j_bmcl_2024_129759
crossref_primary_10_1007_s10555_023_10114_1
crossref_primary_10_1016_j_jneumeth_2025_110550
crossref_primary_10_1007_s40726_023_00278_3
crossref_primary_10_3389_fcell_2025_1598232
crossref_primary_10_1007_s42994_025_00237_0
crossref_primary_10_1093_biolre_ioae011
crossref_primary_10_3390_cancers17060949
crossref_primary_10_1016_j_chembiol_2024_07_007
crossref_primary_10_1093_femsre_fuaf045
crossref_primary_10_1073_pnas_2213363120
crossref_primary_10_1016_j_algal_2025_104142
crossref_primary_10_1016_j_nantod_2024_102251
crossref_primary_10_1016_j_tig_2025_04_009
crossref_primary_10_1016_j_it_2023_09_005
crossref_primary_10_3389_fimmu_2022_908174
crossref_primary_10_1016_j_jmb_2024_168845
crossref_primary_10_1042_BST20210567
crossref_primary_10_1038_s41467_025_60735_z
crossref_primary_10_1146_annurev_cancerbio_062722_021823
crossref_primary_10_2147_CMAR_S424422
crossref_primary_10_1016_j_mocell_2024_100137
crossref_primary_10_1186_s11658_025_00773_z
crossref_primary_10_1007_s43440_025_00770_1
crossref_primary_10_1002_mco2_331
crossref_primary_10_3390_cells13161367
crossref_primary_10_1016_j_isci_2025_112699
crossref_primary_10_1158_2159_8290_CD_24_0296
crossref_primary_10_1016_j_cellin_2023_100128
crossref_primary_10_1038_s41586_024_07141_5
crossref_primary_10_1093_procel_pwaf010
crossref_primary_10_1002_advs_202307216
crossref_primary_10_1016_j_jpha_2022_11_003
crossref_primary_10_1016_j_tibs_2024_10_005
crossref_primary_10_1002_mco2_329
crossref_primary_10_3389_fonc_2025_1569651
crossref_primary_10_1093_nar_gkaf643
crossref_primary_10_3390_biom13030558
crossref_primary_10_1016_j_aca_2024_342513
crossref_primary_10_1016_j_stress_2025_101016
crossref_primary_10_1016_j_biopha_2023_114474
crossref_primary_10_1016_j_cell_2022_06_052
crossref_primary_10_1080_15592294_2023_2293411
crossref_primary_10_15252_msb_202211392
crossref_primary_10_1167_iovs_65_2_27
crossref_primary_10_1002_jcb_30535
crossref_primary_10_1016_j_biosystems_2024_105272
crossref_primary_10_1038_s41392_024_01812_5
crossref_primary_10_3390_ijms26073075
crossref_primary_10_1093_nar_gkaf897
crossref_primary_10_1016_j_ijbiomac_2025_146910
crossref_primary_10_1038_s41467_024_51785_w
crossref_primary_10_1016_j_apsb_2025_07_019
crossref_primary_10_1002_mco2_261
crossref_primary_10_1016_j_bbadis_2024_167652
crossref_primary_10_1007_s10565_025_09995_5
crossref_primary_10_1016_j_jot_2025_08_013
crossref_primary_10_3389_fcell_2025_1621380
crossref_primary_10_3390_jdb10030028
crossref_primary_10_1007_s00418_024_02296_8
crossref_primary_10_1080_23748834_2024_2335707
crossref_primary_10_1016_j_arr_2024_102616
crossref_primary_10_1093_nar_gkad1172
crossref_primary_10_3389_fgeed_2024_1304110
crossref_primary_10_3390_pathogens13121080
crossref_primary_10_3390_epigenomes6030022
crossref_primary_10_1016_j_neuro_2023_05_004
crossref_primary_10_1080_00207454_2023_2276656
crossref_primary_10_1093_gpbjnl_qzaf029
crossref_primary_10_1038_s44319_024_00332_1
crossref_primary_10_1128_mbio_01940_24
crossref_primary_10_1038_s41588_024_01706_w
crossref_primary_10_1002_ctm2_1801
crossref_primary_10_1111_imm_13680
crossref_primary_10_3389_fonc_2023_1144184
crossref_primary_10_1016_j_biopha_2024_116652
crossref_primary_10_3389_fonc_2023_1241532
crossref_primary_10_3389_fgene_2022_903923
crossref_primary_10_3390_cancers16213687
crossref_primary_10_1016_j_tetlet_2023_154888
crossref_primary_10_1016_j_jbc_2025_110444
crossref_primary_10_1016_j_scienta_2025_114255
crossref_primary_10_1093_jxb_erad175
crossref_primary_10_3389_fpls_2022_1075279
crossref_primary_10_1146_annurev_biophys_071524_111008
crossref_primary_10_1371_journal_pbio_3003191
crossref_primary_10_31083_FBL27428
crossref_primary_10_1039_D5NR00686D
crossref_primary_10_1093_nar_gkaf356
crossref_primary_10_1002_advs_202404608
crossref_primary_10_3390_cells13010004
crossref_primary_10_3389_fonc_2025_1613423
crossref_primary_10_3390_jcm12247738
crossref_primary_10_1016_j_ijbiomac_2024_130005
crossref_primary_10_1016_j_scitotenv_2024_174972
crossref_primary_10_1038_s41467_023_37480_2
crossref_primary_10_1093_femspd_ftad034
crossref_primary_10_1016_j_apsb_2025_08_022
crossref_primary_10_1016_j_pharmthera_2024_108638
crossref_primary_10_1073_pnas_2426449122
crossref_primary_10_1093_plphys_kiad614
crossref_primary_10_1007_s12035_024_04624_4
crossref_primary_10_1146_annurev_genom_120423_013542
crossref_primary_10_1186_s13059_025_03618_2
crossref_primary_10_1021_jasms_3c00223
crossref_primary_10_1016_j_ymthe_2025_09_005
crossref_primary_10_1016_j_jbc_2025_108464
crossref_primary_10_1111_tpj_16159
crossref_primary_10_3390_ijms25052750
crossref_primary_10_1021_acs_chemrestox_5c00150
crossref_primary_10_3390_a16090401
crossref_primary_10_1186_s13072_025_00614_5
crossref_primary_10_1083_jcb_202311021
crossref_primary_10_1186_s12943_023_01856_1
crossref_primary_10_1093_bib_bbae364
crossref_primary_10_3389_fgene_2022_1085391
crossref_primary_10_1016_j_jmb_2024_168671
crossref_primary_10_1016_j_jmb_2023_168394
crossref_primary_10_3390_biomedicines12071559
crossref_primary_10_1016_j_gde_2023_102147
crossref_primary_10_1093_stmcls_sxaf002
crossref_primary_10_1002_cbin_11975
crossref_primary_10_1016_j_micres_2024_128041
crossref_primary_10_1038_s41467_023_44121_1
crossref_primary_10_1007_s00418_024_02291_z
crossref_primary_10_1007_s11596_025_00049_9
crossref_primary_10_1002_mco2_509
crossref_primary_10_1016_j_tranon_2025_102275
crossref_primary_10_1111_brv_13135
crossref_primary_10_1038_s41576_023_00684_9
crossref_primary_10_3389_fcell_2022_1070338
crossref_primary_10_1016_j_jmb_2024_168442
crossref_primary_10_1111_cpr_13733
crossref_primary_10_1016_j_jbc_2025_108163
crossref_primary_10_1186_s13072_024_00532_y
crossref_primary_10_3390_ijms25115637
crossref_primary_10_1016_j_tetlet_2023_154602
crossref_primary_10_1016_j_molcel_2024_10_023
crossref_primary_10_1186_s13072_023_00491_w
crossref_primary_10_1016_j_stem_2023_09_010
crossref_primary_10_1242_dev_204384
crossref_primary_10_1186_s13148_023_01562_1
crossref_primary_10_1186_s12864_025_11776_7
crossref_primary_10_1016_j_jgg_2024_09_008
crossref_primary_10_1042_BCJ20230011
crossref_primary_10_1016_j_isci_2025_112613
crossref_primary_10_1186_s13045_025_01726_x
crossref_primary_10_1038_s41556_025_01687_w
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_1016_j_phrs_2024_107182
crossref_primary_10_31083_j_fbl2909331
crossref_primary_10_1111_febs_16759
crossref_primary_10_1016_j_ejmech_2025_117463
crossref_primary_10_1016_j_jprot_2023_104889
crossref_primary_10_3892_ol_2025_15238
crossref_primary_10_3389_fncir_2022_875873
crossref_primary_10_3389_freae_2023_1245832
crossref_primary_10_3390_ijms24021463
crossref_primary_10_1016_j_exer_2023_109673
crossref_primary_10_1093_bib_bbad165
crossref_primary_10_3390_dna5020022
crossref_primary_10_1038_s41388_025_03315_1
crossref_primary_10_1002_jnr_70017
crossref_primary_10_1016_j_nantod_2024_102519
crossref_primary_10_3390_cancers15020425
crossref_primary_10_1186_s13148_023_01574_x
crossref_primary_10_1007_s11914_023_00808_4
crossref_primary_10_1038_s44318_024_00329_5
crossref_primary_10_1186_s12964_025_02333_6
crossref_primary_10_3389_fimmu_2024_1338922
crossref_primary_10_1016_j_conb_2023_102832
crossref_primary_10_1038_s41419_024_07117_3
crossref_primary_10_1126_sciadv_adv4082
crossref_primary_10_1038_s41419_025_07914_4
crossref_primary_10_1007_s00418_024_02293_x
crossref_primary_10_1038_s41593_024_01653_z
crossref_primary_10_1093_toxsci_kfae008
crossref_primary_10_3389_fimmu_2025_1676953
crossref_primary_10_3389_fimmu_2023_1171834
crossref_primary_10_3389_fcell_2025_1566567
crossref_primary_10_1002_mco2_782
crossref_primary_10_1038_s41377_025_01786_1
crossref_primary_10_1042_BCJ20230342
crossref_primary_10_1093_nar_gkaf188
crossref_primary_10_3390_ijms252212043
crossref_primary_10_1186_s40364_025_00805_y
crossref_primary_10_3390_ijms26125799
crossref_primary_10_1038_s41392_024_01946_6
crossref_primary_10_1101_gad_352129_124
crossref_primary_10_3389_fpls_2022_984702
crossref_primary_10_1101_gr_277931_123
crossref_primary_10_1038_s41564_023_01509_5
crossref_primary_10_3390_ijms25031459
crossref_primary_10_1002_cac2_12633
crossref_primary_10_1371_journal_pgen_1011726
crossref_primary_10_1002_advs_202506529
crossref_primary_10_1186_s13072_024_00563_5
crossref_primary_10_1016_j_fsi_2025_110887
crossref_primary_10_1016_j_jad_2024_08_202
crossref_primary_10_1002_mco2_659
crossref_primary_10_1016_j_ajhg_2023_02_011
crossref_primary_10_1128_aem_01885_23
crossref_primary_10_1016_j_biomaterials_2025_123468
crossref_primary_10_1038_s41576_024_00723_z
crossref_primary_10_1007_s11033_024_09853_3
crossref_primary_10_1042_EBC20253022
crossref_primary_10_1038_s41418_025_01533_4
crossref_primary_10_1021_acs_jafc_5c09513
crossref_primary_10_1016_j_tips_2023_12_002
crossref_primary_10_3389_fcell_2022_1068347
crossref_primary_10_3390_fermentation11040230
crossref_primary_10_1111_cns_14225
crossref_primary_10_1186_s42397_025_00225_1
crossref_primary_10_1007_s11010_025_05316_w
crossref_primary_10_1038_s41590_024_01985_9
crossref_primary_10_7554_eLife_103953_3
crossref_primary_10_1016_j_ijbiomac_2025_140601
crossref_primary_10_1111_imm_13956
crossref_primary_10_1002_advs_202402838
crossref_primary_10_1016_j_redox_2025_103696
crossref_primary_10_1016_j_heliyon_2024_e38426
crossref_primary_10_3390_cells12121625
crossref_primary_10_1021_acs_jafc_5c05262
crossref_primary_10_1042_BCJ20230306
crossref_primary_10_1159_000541822
crossref_primary_10_3892_ijmm_2024_5428
crossref_primary_10_3390_biom14020140
crossref_primary_10_1016_j_gendis_2025_101622
crossref_primary_10_1007_s11274_024_03978_0
crossref_primary_10_1038_s41593_024_01652_0
crossref_primary_10_3390_diagnostics14060652
crossref_primary_10_1002_cac2_12610
crossref_primary_10_1021_acs_biochem_5c00114
crossref_primary_10_1016_j_anireprosci_2024_107534
crossref_primary_10_1080_19490976_2025_2490207
crossref_primary_10_1002_advs_202307526
crossref_primary_10_1007_s00412_023_00803_9
crossref_primary_10_4103_NRR_NRR_D_23_01498
crossref_primary_10_3389_fimmu_2024_1450440
crossref_primary_10_1002_mco2_752
crossref_primary_10_3390_genes14020329
crossref_primary_10_1186_s13059_025_03626_2
crossref_primary_10_1038_s41392_023_01575_5
crossref_primary_10_1038_s44319_024_00199_2
Cites_doi 10.1016/j.copbio.2018.07.005
10.1038/nature15401
10.1038/nature07829
10.1038/nature19361
10.1038/s41587-019-0296-7
10.1038/nrm3382
10.1002/j.1460-2075.1988.tb02956.x
10.1093/nar/gkr304
10.1126/science.1231382
10.1016/j.cell.2013.01.032
10.1038/ncb2113
10.1016/j.molcel.2019.11.011
10.1093/emboj/17.10.2886
10.7554/eLife.21856
10.1073/pnas.1403565111
10.1128/MCB.01529-06
10.1038/s41556-018-0248-3
10.1073/pnas.51.5.786
10.1093/nar/gkv090
10.1016/j.jmb.2011.01.003
10.1038/s41467-021-22636-9
10.1038/ncomms15315
10.1016/S1097-2765(00)80257-9
10.1016/j.molcel.2005.08.032
10.1038/s41576-019-0105-7
10.1016/j.cell.2012.06.051
10.1016/j.molcel.2015.02.029
10.1126/science.abg7216
10.1016/j.cell.2012.08.005
10.1016/j.devcel.2019.08.004
10.1101/2021.07.08.451691v1.full
10.1016/j.celrep.2021.109799
10.1038/nrm.2017.119
10.1016/j.cell.2013.06.051
10.1016/j.cell.2017.07.041
10.1038/s41586-019-1668-3
10.1126/sciadv.aat6224
10.1038/s41586-021-03193-z
10.1038/nature23262
10.1016/S0092-8674(02)00759-6
10.1038/s41556-021-00725-7
10.1038/nrm.2017.47
10.1016/j.cell.2013.01.052
10.1126/science.aaw5118
10.1016/j.devcel.2011.10.008
10.1128/MCB.01517-07
10.1016/j.molcel.2019.11.021
10.1038/s41594-017-0013-5
10.1073/pnas.2002068117
10.1016/j.celrep.2019.12.057
10.1016/j.molcel.2014.06.005
10.1074/jbc.RA118.006620
10.1038/s41467-021-26147-5
10.1038/s41467-020-17238-w
10.1038/s41586-020-2097-z
10.1016/j.cell.2013.02.028
10.1128/MCB.25.8.3305-3316.2005
10.15252/embr.202152435
10.1016/j.cell.2005.10.023
10.1128/MCB.00689-13
10.1038/nature19360
10.1126/science.aaw8806
10.1038/s41467-021-24532-8
10.1038/nature22822
10.1038/s41467-021-26065-6
10.1016/j.molcel.2019.12.001
10.1016/S0092-8674(05)80078-9
10.1038/s41556-018-0093-4
10.1016/j.molcel.2018.10.046
10.1038/s41556-021-00776-w
10.1038/nsmb869
10.1038/nsmb.2599
10.1038/nrm2763
10.7554/eLife.03737
10.1101/gad.300704
10.1016/j.bbagrm.2020.194567
10.1016/j.tig.2015.10.007
10.1038/s41588-021-00820-3
10.1038/s41556-019-0282-9
10.1038/nature10956
10.1038/s41586-019-1877-9
10.1126/science.aar3958
10.7554/eLife.00861
10.1126/science.aau0583
10.1038/s41556-020-0536-6
10.1038/s41576-018-0060-8
10.1242/dev.033902
10.1016/0092-8674(91)90554-C
10.7554/eLife.23249
10.1101/gad.306464.117
10.1126/science.1065683
10.1038/nature19362
10.1016/j.molcel.2019.08.018
10.1101/gad.1198204
10.1038/nature12819
10.1016/j.cell.2012.09.045
10.7554/eLife.01632
10.1016/j.cell.2017.04.022
10.1371/journal.pone.0051765
10.1101/gad.326488.119
10.1242/dev.181180
10.1016/j.cell.2007.08.016
10.1073/pnas.1016071107
10.1016/j.cell.2019.08.037
10.1083/jcb.201611135
10.1038/s41467-019-09175-0
10.1016/j.molcel.2018.10.017
10.1038/nature22989
10.1016/0003-9861(72)90174-9
10.1126/science.aab2006
10.1186/s13059-020-01957-w
10.1016/j.molcel.2010.02.032
10.1038/ng.3965
10.1016/j.molcel.2010.12.016
10.1016/j.molcel.2009.07.027
10.1101/gad.265439.115
10.1016/j.cell.2019.10.009
10.1073/pnas.0502413102
10.1186/s12915-021-01017-0
10.1016/j.tibtech.2013.04.004
10.1016/j.tig.2011.06.006
10.1126/science.aam5339
10.1016/j.cell.2007.05.009
10.1038/nsmb.1629
10.1016/j.devcel.2021.01.014
10.1038/35065138
10.1101/gr.273771.120
10.1016/S0092-8674(02)00798-5
10.1016/j.molcel.2017.04.018
10.1038/ncomms10148
10.1038/ncomms6868
10.1016/j.molcel.2020.02.005
10.1038/nrm3931
10.1016/j.molcel.2010.08.020
10.1016/S0021-9258(19)81723-4
10.1038/ncomms7033
10.1073/pnas.1324036111
10.1038/nature12318
10.1038/nsmb851
10.1038/s41588-019-0428-5
10.1038/nsmb.1489
10.1093/nar/gkw848
10.1126/science.1124000
10.1038/s41586-019-1534-3
10.1126/science.1184208
10.1101/gad.195636.112
10.1038/s41586-019-1275-3
10.1038/nature14450
10.1101/2021.07.06.451383v1
10.1126/science.aar2555
10.1126/science.aai8236
10.1038/nature08866
10.1016/j.cell.2018.01.022
10.1016/j.cell.2006.10.043
10.1002/cpmb.85
10.1101/gad.331520.119
10.1126/science.aar4199
10.1038/s41586-021-03776-w
10.1038/ncomms12284
10.1128/MCB.20.23.8866-8878.2000
10.1016/j.tig.2019.02.003
10.1016/j.cell.2014.06.027
10.1038/nature11082
10.15252/embr.202051009
10.1038/s41588-020-0586-5
10.1126/science.1100576
10.1038/s41586-019-1038-1
10.1016/j.cbpa.2021.05.002
10.1016/j.celrep.2014.05.026
10.1534/genetics.118.301353
10.1093/emboj/17.11.3155
10.1038/nature13986
10.1093/nar/gks747
10.1038/nature04219
10.1038/s41467-020-15084-4
10.1016/j.molcel.2009.12.012
10.1038/s41586-019-1016-7
10.1016/j.molcel.2019.08.019
10.1016/j.molmet.2020.01.006
10.1038/s41586-019-1678-1
10.1038/s41467-019-09982-5
10.1016/j.ydbio.2011.04.010
10.1016/j.cell.2009.07.031
10.1038/s41467-019-10844-3
10.1038/nbt.3199
10.1016/j.cell.2018.11.018
10.1038/ncomms3233
10.1126/sciadv.1500737
10.1016/j.cell.2020.11.027
10.1038/nature04785
10.1038/ng.3385
10.1016/j.gde.2019.04.013
10.1074/jbc.273.10.5858
10.1101/gad.333542.119
10.1038/s41577-021-00628-6
10.1038/s41467-019-09582-3
10.1038/nature05987
10.1186/s13059-020-02201-1
10.1016/j.molcel.2016.08.032
10.1038/nmeth.3325
10.1101/gr.217240.116
10.1126/science.1181369
10.1093/nar/gkv722
10.1038/s41586-019-1024-7
10.1074/jbc.C400151200
10.1038/s41588-021-00821-2
10.1038/s41576-020-0270-8
10.1016/j.molcel.2017.01.009
10.4161/epi.20584
10.1074/jbc.M500796200
10.7554/eLife.49278
10.1016/j.molcel.2019.09.029
10.15252/embr.202152774
10.1038/35065132
10.1126/science.aba5545
10.1186/s13059-018-1483-4
10.1016/j.cub.2021.03.002
10.1016/j.celrep.2012.08.016
10.1038/s41467-020-20672-5
10.1038/s41467-019-09141-w
10.1038/s41580-020-0262-8
10.1038/s41586-020-2533-0
10.1016/j.cell.2011.08.008
10.1038/s41588-018-0218-5
10.1016/j.stem.2017.03.003
10.1016/S0092-8674(00)81683-9
10.1016/j.molcel.2021.09.019
10.1074/jbc.M115.661363
10.1093/nar/gkx578
10.1016/S0960-9822(02)01391-X
10.1016/j.devcel.2009.08.005
10.1016/S1097-2765(03)00092-3
10.1038/nature16496
10.1101/gad.321646.118
ContentType Journal Article
Copyright Springer Nature Limited 2022
2022. Springer Nature Limited.
Springer Nature Limited 2022.
Copyright_xml – notice: Springer Nature Limited 2022
– notice: 2022. Springer Nature Limited.
– notice: Springer Nature Limited 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41576-022-00468-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 580
ExternalDocumentID 35338361
10_1038_s41576_022_00468_7
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 27321
– fundername: Cancer Research UK
  grantid: RG96894
– fundername: Cancer Research UK
  grantid: C6946/A24843
– fundername: Wellcome Trust
  grantid: WT203144
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c441t-ca2b19cc27e88dde85c294f6440e57dacb4679948e6dff7bededca85217024713
IEDL.DBID M7P
ISICitedReferencesCount 650
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773186600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Thu Sep 04 17:43:17 EDT 2025
Tue Oct 07 05:11:55 EDT 2025
Mon Jul 21 05:45:57 EDT 2025
Tue Nov 18 22:22:03 EST 2025
Sat Nov 29 02:34:59 EST 2025
Fri Feb 21 02:40:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2022. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-ca2b19cc27e88dde85c294f6440e57dacb4679948e6dff7bededca85217024713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4530-6359
0000-0001-5303-0973
PMID 35338361
PQID 2703231076
PQPubID 44267
PageCount 18
ParticipantIDs proquest_miscellaneous_2644006577
proquest_journals_2703231076
pubmed_primary_35338361
crossref_primary_10_1038_s41576_022_00468_7
crossref_citationtrail_10_1038_s41576_022_00468_7
springer_journals_10_1038_s41576_022_00468_7
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Erkek (CR36) 2013; 20
Escobar (CR91) 2019; 179
Schneider, Bannister, Weise, Kouzarides (CR72) 2004; 279
Schotta (CR99) 2004; 18
Gehani (CR73) 2010; 39
Fischle (CR74) 2005; 438
Tidwell, Allfrey, Mirsky (CR24) 1968; 243
Lieberman-Aiden (CR10) 2009; 326
Harada (CR191) 2019; 21
Byvoet, Shepherd, Hardin, Noland (CR8) 1972; 148
Mutlu (CR208) 2018; 4
Gibson (CR214) 2019; 179
Blackledge (CR80) 2020; 77
Tardat (CR152) 2010; 12
Zhang (CR202) 2018; 72
Henikoff, Shilatifard (CR26) 2011; 27
Rondinelli (CR155) 2015; 43
Hebbes, Thorne, Crane-Robinson (CR182) 1988; 7
Wiese, Bannister (CR5) 2020; 38
Van Rechem (CR61) 2021; 37
Gehre (CR109) 2020; 52
Feng (CR163) 2020; 21
Zhang (CR106) 2019; 574
van de Werken (CR195) 2014; 5
Simon, Kingston (CR76) 2009; 10
Arnould (CR134) 2021; 590
Black (CR158) 2013; 154
Eeftens, Kapoor, Michieletto, Brangwynne (CR225) 2021; 12
Bannister (CR54) 2005; 280
Poleshko (CR169) 2019; 8
Gopalan, Wang, Harper, Garber, Fazzio (CR189) 2021; 81
Ayrapetov, Gursoy-Yuzugullu, Xu, Xu, Price (CR145) 2014; 111
Brahma, Henikoff (CR186) 2019; 73
Alagoz (CR146) 2015; 43
Godfrey (CR124) 2019; 10
Boskovic (CR197) 2012; 7
Martire, Banaszynski (CR6) 2020; 21
O’Geen (CR233) 2017; 45
Chen (CR28) 2015; 47
Botuyan (CR138) 2006; 127
Nakamura (CR140) 2019; 21
Durrin, Mann, Kayne, Grunstein (CR17) 1991; 65
Armache (CR69) 2020; 583
Zheng (CR198) 2016; 63
Dawson (CR63) 2012; 2
Li (CR144) 2014; 111
Wang, Fisher, Poulin (CR209) 2011; 355
Plys (CR84) 2019; 33
Huang (CR175) 2021; 31
Tessarz (CR119) 2014; 505
Cano-Rodriguez (CR32) 2016; 7
Tan (CR21) 2011; 146
Verkuijl, Rots (CR234) 2019; 55
Hormanseder (CR39) 2017; 21
Hainer, Fazzio (CR185) 2019; 126
Luger, Dechassa, Tremethick (CR1) 2012; 13
Nicetto (CR103) 2019; 363
Meers, Janssens, Henikoff (CR188) 2021
Lo (CR65) 2000; 5
Zhang, Zhang, Dong, Xiong, Zhu (CR46) 2020; 21
Beck (CR151) 2012; 26
Lindeman (CR199) 2011; 21
Flavahan (CR179) 2019; 575
McCarthy (CR104) 2021; 23
Sabari (CR22) 2015; 58
Kaiser, Semple (CR128) 2018; 19
Riising (CR92) 2014; 55
Larson (CR220) 2017; 547
Nacev (CR7) 2019; 567
Lange (CR114) 2013; 4
Shimko, North, Bruns, Poirier, Ottesen (CR111) 2011; 408
Long (CR154) 2020; 577
Kind (CR168) 2013; 153
Cosgrove, Boeke, Wolberger (CR14) 2004; 11
Kearns (CR230) 2015; 12
Dai, Ramesh, Locasale (CR4) 2020; 21
Zippo (CR66) 2009; 138
Wang (CR196) 2018; 20
Wang (CR221) 2019; 76
North (CR115) 2011; 39
Liu, Zhang, Liu, Schatz (CR130) 2021
Pengelly, Kalb, Finkl, Muller (CR79) 2015; 29
Clouaire, Legube (CR133) 2019; 35
van Leeuwen, Gafken, Gottschling (CR121) 2002; 109
Bannister (CR95) 2001; 410
Gowans (CR23) 2019; 76
Nicetto, Zaret (CR94) 2019; 55
Protacio, Li, Lowary, Widom (CR18) 2000; 20
Cho (CR216) 2018; 361
Zhang, Bone, Edmondson, Turner, Roth (CR19) 1998; 17
Klein (CR159) 2021; 372
Lachner, O’Carroll, Rea, Mechtler, Jenuwein (CR96) 2001; 410
Mas (CR174) 2018; 50
Lismer (CR41) 2021; 56
Mihola (CR127) 2021; 19
Dixon (CR11) 2012; 485
Coleman, Struhl (CR90) 2017; 356
Neumann (CR15) 2009; 36
Lai, Pugh (CR2) 2017; 18
Heintzman (CR42) 2009; 459
Tamburri (CR81) 2020; 77
Erdel (CR222) 2020; 78
Methot (CR212) 2021; 23
Chong (CR217) 2018; 361
Brehove (CR64) 2015; 290
Vakoc, Sachdeva, Wang, Blobel (CR55) 2006; 26
Allshire, Madhani (CR93) 2018; 19
Lawrence, Daujat, Schneider (CR122) 2016; 32
Chen, Djekidel, Zhang (CR87) 2021; 53
Wu, Wang, Zhang, Gan, Zhang (CR156) 2017; 45
Faulkner, Maksimovic, David (CR180) 2021; 63
Kundu (CR171) 2017; 65
Laue, Rajshekar, Courtney, Lewis, Goll (CR201) 2019; 10
Burton (CR105) 2020; 22
Dorighi (CR44) 2017; 66
Hughes, Kelley, Klose (CR48) 2020; 1863
Thorslund (CR135) 2015; 527
Altemose (CR192) 2021
Akkers (CR203) 2009; 17
Zhang (CR35) 2016; 537
Ng, Robert, Young, Struhl (CR37) 2003; 11
Benayoun (CR29) 2014; 158
Bleckwehl (CR47) 2021; 12
Li, Levitus, Bustamante, Widom (CR110) 2005; 12
Allfrey, Faulkner, Mirsky (CR12) 1964; 51
Rhodes (CR173) 2020; 30
Vermeulen (CR30) 2007; 131
Ninova, Fejes Toth, Aravin (CR102) 2019; 146
Liu (CR51) 2016; 537
Creyghton (CR43) 2010; 107
Dahl (CR34) 2016; 537
Sansam (CR149) 2018; 32
Shogren-Knaak (CR13) 2006; 311
Canzio (CR97) 2011; 41
Zenk (CR89) 2017; 357
Huang (CR59) 2019; 567
Eskeland (CR83) 2010; 38
Luco (CR58) 2010; 327
Martire (CR68) 2019; 51
Verdin, Ott (CR16) 2015; 16
Petruk (CR38) 2001; 294
Sitbon, Boyarchuk, Dingli, Loew, Almouzni (CR70) 2020; 11
Bannister, Schneider, Kouzarides (CR25) 2002; 109
Kreher (CR211) 2018; 210
Kaneshiro, Rechtsteiner, Strome (CR210) 2019; 10
Skene, Henikoff (CR184) 2017; 6
Mawer (CR120) 2021; 22
Lim (CR153) 2013; 33
Grey (CR129) 2017; 27
Pfister (CR142) 2014; 7
Deng (CR190) 2022; 375
Inoue, Jiang, Lu, Suzuki, Zhang (CR88) 2017; 547
Kaya-Okur (CR187) 2019; 10
Talbert, Meers, Henikoff (CR27) 2019; 20
Lauberth (CR31) 2013; 152
Rowley, Corces (CR161) 2018; 19
van Steensel, Belmont (CR166) 2017; 169
Hontelez (CR49) 2015; 6
Soufi, Donahue, Zaret (CR101) 2012; 151
Becker (CR141) 2021; 596
Pope (CR160) 2014; 515
Snowden, Gregory, Case, Pabo (CR226) 2002; 12
Kwon, Zhao, Lamonica, Zhou (CR232) 2017; 8
Aranda, Mas, Di Croce (CR77) 2015; 1
Falk (CR162) 2019; 570
Bao (CR118) 2019; 76
Pesavento, Yang, Kelleher, Mizzen (CR137) 2008; 28
Tropberger (CR116) 2013; 152
Miotto, Struhl (CR148) 2010; 37
Gaj, Gersbach, Barbas (CR227) 2013; 31
Schuettengruber, Cavalli (CR75) 2009; 136
Vastenhouw (CR200) 2010; 464
Lepack (CR108) 2020; 368
Spruce (CR126) 2020; 34
Hanahan, Weinberg (CR131) 2000; 100
Siklenka (CR40) 2015; 350
Li, Harrison, Villalta, Kaplan, Eisen (CR206) 2014; 3
Hake (CR67) 2005; 102
Towbin (CR167) 2012; 150
CR9
McSwiggen, Mir, Darzacq, Tjian (CR223) 2019; 33
Tatavosian (CR85) 2019; 294
Sabari (CR215) 2018; 361
Pengelly, Copur, Jackle, Herzig, Muller (CR78) 2013; 339
Francis, Kingston, Woodcock (CR82) 2004; 306
Brejc (CR178) 2017; 171
Oikawa (CR204) 2020; 11
Schubeler (CR123) 2004; 18
Rickels (CR45) 2017; 49
Rogakou, Pilch, Orr, Ivanova, Bonner (CR132) 1998; 273
Du (CR172) 2020; 77
Montavon (CR165) 2021; 12
Meers (CR60) 2017; 6
Mishra (CR157) 2018; 175
Carrozza (CR57) 2005; 123
Anderson (CR177) 2019; 51
Crane (CR176) 2015; 523
Barski (CR181) 2007; 129
Nitsch, Zorro Shahidian, Schneider (CR20) 2021; 22
Farrelly (CR107) 2019; 567
Mattiroli (CR136) 2012; 150
Daujat (CR100) 2009; 16
Armeev, Kniazeva, Komarova, Kirpichnikov, Shaytan (CR193) 2021; 12
Gong, Clouaire, Aguirrebengoa, Legube, Miller (CR143) 2017; 216
Chiarella (CR229) 2020; 38
Strom (CR219) 2017; 547
Hanna (CR52) 2018; 25
Murphy, Wu, James, Wike, Cairns (CR50) 2018; 172
Zorro Shahidian (CR117) 2021; 22
Seller, Cho, O’Farrell (CR207) 2019; 33
Ooi (CR53) 2007; 448
Strickfaden (CR218) 2020; 183
Hilton (CR231) 2015; 33
Newman (CR33) 2006; 441
Martinez-Balbas (CR228) 1998; 17
North (CR112) 2012; 40
Boettiger (CR170) 2016; 529
Kizer (CR56) 2005; 25
Macdonald (CR71) 2005; 20
Qin (CR147) 2019; 10
Di Cerbo (CR113) 2014; 3
Brind’Amour (CR183) 2015; 6
Bhattacharyya (CR213) 2021; 31
Gallego (CR224) 2020; 579
Turner (CR3) 1993; 75
Mei (CR86) 2021; 53
Chen (CR205) 2013; 2
Fradet-Turcotte (CR139) 2013; 499
Lu (CR125) 2008; 15
Xia (CR194) 2019; 365
Kuo (CR150) 2012; 484
Jain (CR235) 2021; 12
Weinberg (CR62) 2019; 573
Bian, Anderson, Yang, Meyer (CR164) 2020; 117
Jack (CR98) 2013; 8
LD Gallego (468_CR224) 2020; 579
S Martire (468_CR6) 2020; 21
E Crane (468_CR176) 2015; 523
M Lawrence (468_CR122) 2016; 32
W Zhang (468_CR19) 1998; 17
D Nicetto (468_CR94) 2019; 55
P Byvoet (468_CR8) 1972; 148
Y Huang (468_CR175) 2021; 31
AJ Bannister (468_CR54) 2005; 280
P Tessarz (468_CR119) 2014; 505
H Long (468_CR154) 2020; 577
RT Coleman (468_CR90) 2017; 356
AJ Plys (468_CR84) 2019; 33
A Harada (468_CR191) 2019; 21
MJ Carrozza (468_CR57) 2005; 123
B Schuettengruber (468_CR75) 2009; 136
B Zhang (468_CR202) 2018; 72
A Zippo (468_CR66) 2009; 138
JA Dahl (468_CR34) 2016; 537
J Brind’Amour (468_CR183) 2015; 6
VG Allfrey (468_CR12) 1964; 51
S Petruk (468_CR38) 2001; 294
T Gaj (468_CR227) 2013; 31
F van Leeuwen (468_CR121) 2002; 109
M Ninova (468_CR102) 2019; 146
K Brejc (468_CR178) 2017; 171
LK Durrin (468_CR17) 1991; 65
BD Towbin (468_CR167) 2012; 150
H O’Geen (468_CR233) 2017; 45
Y Feng (468_CR163) 2020; 21
MP Creyghton (468_CR43) 2010; 107
C Wang (468_CR196) 2018; 20
AJ Bannister (468_CR25) 2002; 109
L Godfrey (468_CR124) 2019; 10
K Siklenka (468_CR40) 2015; 350
CR Vakoc (468_CR55) 2006; 26
HH Ng (468_CR37) 2003; 11
UC Lange (468_CR114) 2013; 4
AR Pengelly (468_CR78) 2013; 339
EM Riising (468_CR92) 2014; 55
JDP Rhodes (468_CR173) 2020; 30
HL Huang (468_CR59) 2019; 567
BM Turner (468_CR3) 1993; 75
WA Flavahan (468_CR179) 2019; 575
P Tropberger (468_CR116) 2013; 152
MP Meers (468_CR60) 2017; 6
C Grey (468_CR129) 2017; 27
L Wang (468_CR221) 2019; 76
JA North (468_CR115) 2011; 39
A Burton (468_CR105) 2020; 22
R Wu (468_CR156) 2017; 45
B Qin (468_CR147) 2019; 10
G Schotta (468_CR99) 2004; 18
N Macdonald (468_CR71) 2005; 20
D Zhang (468_CR106) 2019; 574
AL Hughes (468_CR48) 2020; 1863
RF Luco (468_CR58) 2010; 327
EC Anderson (468_CR177) 2019; 51
SA Verkuijl (468_CR234) 2019; 55
EP Rogakou (468_CR132) 1998; 273
C Van Rechem (468_CR61) 2021; 37
Z Chen (468_CR87) 2021; 53
WK Cho (468_CR216) 2018; 361
AW Snowden (468_CR226) 2002; 12
BR Sabari (468_CR22) 2015; 58
JM Eeftens (468_CR225) 2021; 12
BA Nacev (468_CR7) 2019; 567
B Rondinelli (468_CR155) 2015; 43
ND Heintzman (468_CR42) 2009; 459
M Lachner (468_CR96) 2001; 410
W Xia (468_CR194) 2019; 365
AM Chiarella (468_CR229) 2020; 38
J Kind (468_CR168) 2013; 153
R Tatavosian (468_CR85) 2019; 294
XY Li (468_CR206) 2014; 3
K Chen (468_CR205) 2013; 2
NA Kearns (468_CR230) 2015; 12
JC Black (468_CR158) 2013; 154
D Nicetto (468_CR103) 2019; 363
C Spruce (468_CR126) 2020; 34
S Brahma (468_CR186) 2019; 73
LC Lindeman (468_CR199) 2011; 21
RC Akkers (468_CR203) 2009; 17
AR Strom (468_CR219) 2017; 547
NL Vastenhouw (468_CR200) 2010; 464
S Aranda (468_CR77) 2015; 1
RU Protacio (468_CR18) 2000; 20
Q Bian (468_CR164) 2020; 117
E Hormanseder (468_CR39) 2017; 21
D Canzio (468_CR97) 2011; 41
X Liu (468_CR51) 2016; 537
W Fischle (468_CR74) 2005; 438
CA Seller (468_CR207) 2019; 33
JA Simon (468_CR76) 2009; 10
F Mattiroli (468_CR136) 2012; 150
JR Newman (468_CR33) 2006; 441
S Jain (468_CR235) 2021; 12
GA Armeev (468_CR193) 2021; 12
SB Hake (468_CR67) 2005; 102
F Gong (468_CR143) 2017; 216
HS Kaya-Okur (468_CR187) 2019; 10
MJ Rowley (468_CR161) 2018; 19
A Lismer (468_CR41) 2021; 56
L Zorro Shahidian (468_CR117) 2021; 22
A Armache (468_CR69) 2020; 583
KR Kaneshiro (468_CR210) 2019; 10
F Zenk (468_CR89) 2017; 357
J Kreher (468_CR211) 2018; 210
WKM Lai (468_CR2) 2017; 18
WS Lo (468_CR65) 2000; 5
C van de Werken (468_CR195) 2014; 5
A Barski (468_CR181) 2007; 129
D Cano-Rodriguez (468_CR32) 2016; 7
MA Dawson (468_CR63) 2012; 2
SJ Hainer (468_CR185) 2019; 126
M Vermeulen (468_CR30) 2007; 131
S Tamburri (468_CR81) 2020; 77
D Hanahan (468_CR131) 2000; 100
A Inoue (468_CR88) 2017; 547
M Alagoz (468_CR146) 2015; 43
TR Hebbes (468_CR182) 1988; 7
T Bhattacharyya (468_CR213) 2021; 31
PJ Skene (468_CR184) 2017; 6
JR Becker (468_CR141) 2021; 596
CW Hanna (468_CR52) 2018; 25
SX Pfister (468_CR142) 2014; 7
A Boskovic (468_CR197) 2012; 7
MS Cosgrove (468_CR14) 2004; 11
T Zhang (468_CR46) 2020; 21
SM Lauberth (468_CR31) 2013; 152
R Rickels (468_CR45) 2017; 49
DN Weinberg (468_CR62) 2019; 573
B Zhang (468_CR35) 2016; 537
KN Klein (468_CR159) 2021; 372
S Faulkner (468_CR180) 2021; 63
T Montavon (468_CR165) 2021; 12
BA Benayoun (468_CR29) 2014; 158
M Brehove (468_CR64) 2015; 290
BD Pope (468_CR160) 2014; 515
R Eskeland (468_CR83) 2010; 38
LA Farrelly (468_CR107) 2019; 567
BR Sabari (468_CR215) 2018; 361
X Li (468_CR144) 2014; 111
MK Ayrapetov (468_CR145) 2014; 111
IB Hilton (468_CR231) 2015; 33
H Neumann (468_CR15) 2009; 36
AP Jack (468_CR98) 2013; 8
S Martire (468_CR68) 2019; 51
B van Steensel (468_CR166) 2017; 169
E Lieberman-Aiden (468_CR10) 2009; 326
V Di Cerbo (468_CR113) 2014; 3
S Gopalan (468_CR189) 2021; 81
AG Larson (468_CR220) 2017; 547
AR Pengelly (468_CR79) 2015; 29
N Altemose (468_CR192) 2021
JR Dixon (468_CR11) 2012; 485
KM Dorighi (468_CR44) 2017; 66
C Liu (468_CR130) 2021
T Clouaire (468_CR133) 2019; 35
AJ Kuo (468_CR150) 2012; 484
C Arnould (468_CR134) 2021; 590
T Thorslund (468_CR135) 2015; 527
A Poleshko (468_CR169) 2019; 8
S Kundu (468_CR171) 2017; 65
MA Martinez-Balbas (468_CR228) 1998; 17
KO Kizer (468_CR56) 2005; 25
M Oikawa (468_CR204) 2020; 11
S Chong (468_CR217) 2018; 361
BA Gibson (468_CR214) 2019; 179
R Schneider (468_CR72) 2004; 279
RC Allshire (468_CR93) 2018; 19
Y Deng (468_CR190) 2022; 375
H Strickfaden (468_CR218) 2020; 183
O Mihola (468_CR127) 2021; 19
S Daujat (468_CR100) 2009; 16
M Wiese (468_CR5) 2020; 38
E Verdin (468_CR16) 2015; 16
S Nitsch (468_CR20) 2021; 22
MP Meers (468_CR188) 2021
S Henikoff (468_CR26) 2011; 27
DB Beck (468_CR151) 2012; 26
K Laue (468_CR201) 2019; 10
PJ Murphy (468_CR50) 2018; 172
VB Kaiser (468_CR128) 2018; 19
S Hontelez (468_CR49) 2015; 6
B Miotto (468_CR148) 2010; 37
X Bao (468_CR118) 2019; 76
JJ Pesavento (468_CR137) 2008; 28
AJ Bannister (468_CR95) 2001; 410
NJ Francis (468_CR82) 2004; 306
M Falk (468_CR162) 2019; 570
M Shogren-Knaak (468_CR13) 2006; 311
Z Dai (468_CR4) 2020; 21
S Mishra (468_CR157) 2018; 175
S Wang (468_CR209) 2011; 355
SS Gehani (468_CR73) 2010; 39
D Schubeler (468_CR123) 2004; 18
K Nakamura (468_CR140) 2019; 21
DT McSwiggen (468_CR223) 2019; 33
RL McCarthy (468_CR104) 2021; 23
JC Shimko (468_CR111) 2011; 408
AE Lepack (468_CR108) 2020; 368
AN Boettiger (468_CR170) 2016; 529
T Tidwell (468_CR24) 1968; 243
D Sitbon (468_CR70) 2020; 11
JA North (468_CR112) 2012; 40
M Tardat (468_CR152) 2010; 12
JSP Mawer (468_CR120) 2021; 22
F Erdel (468_CR222) 2020; 78
468_CR9
S Erkek (468_CR36) 2013; 20
G Li (468_CR110) 2005; 12
CG Sansam (468_CR149) 2018; 32
G Mas (468_CR174) 2018; 50
T Bleckwehl (468_CR47) 2021; 12
A Soufi (468_CR101) 2012; 151
X Lu (468_CR125) 2008; 15
K Luger (468_CR1) 2012; 13
TM Escobar (468_CR91) 2019; 179
DY Kwon (468_CR232) 2017; 8
NP Blackledge (468_CR80) 2020; 77
B Mutlu (468_CR208) 2018; 4
PB Talbert (468_CR27) 2019; 20
H Mei (468_CR86) 2021; 53
HJ Lim (468_CR153) 2013; 33
SKT Ooi (468_CR53) 2007; 448
GJ Gowans (468_CR23) 2019; 76
SP Methot (468_CR212) 2021; 23
A Fradet-Turcotte (468_CR139) 2013; 499
MV Botuyan (468_CR138) 2006; 127
M Gehre (468_CR109) 2020; 52
K Chen (468_CR28) 2015; 47
Z Du (468_CR172) 2020; 77
M Tan (468_CR21) 2011; 146
H Zheng (468_CR198) 2016; 63
References_xml – volume: 55
  start-page: 68
  year: 2019
  end-page: 73
  ident: CR234
  article-title: The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.07.005
– volume: 527
  start-page: 389
  year: 2015
  end-page: 393
  ident: CR135
  article-title: Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage
  publication-title: Nature
  doi: 10.1038/nature15401
– volume: 459
  start-page: 108
  year: 2009
  end-page: 112
  ident: CR42
  article-title: Histone modifications at human enhancers reflect global cell-type-specific gene expression
  publication-title: Nature
  doi: 10.1038/nature07829
– volume: 537
  start-page: 553
  year: 2016
  end-page: 557
  ident: CR35
  article-title: Allelic reprogramming of the histone modification H3K4me3 in early mammalian development
  publication-title: Nature
  doi: 10.1038/nature19361
– volume: 38
  start-page: 50
  year: 2020
  end-page: 55
  ident: CR229
  article-title: Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0296-7
– volume: 13
  start-page: 436
  year: 2012
  end-page: 447
  ident: CR1
  article-title: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3382
– volume: 7
  start-page: 1395
  year: 1988
  end-page: 1402
  ident: CR182
  article-title: A direct link between core histone acetylation and transcriptionally active chromatin
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02956.x
– volume: 39
  start-page: 6465
  year: 2011
  end-page: 6474
  ident: CR115
  article-title: Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr304
– volume: 339
  start-page: 698
  year: 2013
  end-page: 699
  ident: CR78
  article-title: A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb
  publication-title: Science
  doi: 10.1126/science.1231382
– volume: 152
  start-page: 859
  year: 2013
  end-page: 872
  ident: CR116
  article-title: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.032
– volume: 12
  start-page: 1086
  year: 2010
  end-page: 1093
  ident: CR152
  article-title: The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2113
– volume: 77
  start-page: 825
  year: 2020
  end-page: 839.e7
  ident: CR172
  article-title: Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.11.011
– volume: 17
  start-page: 2886
  year: 1998
  end-page: 2893
  ident: CR228
  article-title: The acetyltransferase activity of CBP stimulates transcription
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.10.2886
– volume: 6
  year: 2017
  ident: CR184
  article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites
  publication-title: eLife
  doi: 10.7554/eLife.21856
– volume: 111
  start-page: 9169
  year: 2014
  end-page: 9174
  ident: CR145
  article-title: DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1403565111
– volume: 26
  start-page: 9185
  year: 2006
  end-page: 9195
  ident: CR55
  article-title: Profile of histone lysine methylation across transcribed mammalian chromatin
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01529-06
– volume: 21
  start-page: 287
  year: 2019
  end-page: 296
  ident: CR191
  article-title: A chromatin integration labelling method enables epigenomic profiling with lower input
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0248-3
– volume: 51
  start-page: 786
  year: 1964
  end-page: 794
  ident: CR12
  article-title: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.51.5.786
– volume: 43
  start-page: 2560
  year: 2015
  end-page: 2574
  ident: CR155
  article-title: H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv090
– volume: 408
  start-page: 187
  year: 2011
  end-page: 204
  ident: CR111
  article-title: Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.01.003
– volume: 12
  start-page: 2387
  year: 2021
  ident: CR193
  article-title: Histone dynamics mediate DNA unwrapping and sliding in nucleosomes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22636-9
– volume: 8
  year: 2017
  ident: CR232
  article-title: Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15315
– volume: 5
  start-page: 917
  year: 2000
  end-page: 926
  ident: CR65
  article-title: Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80257-9
– volume: 20
  start-page: 199
  year: 2005
  end-page: 211
  ident: CR71
  article-title: Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.08.032
– volume: 20
  start-page: 283
  year: 2019
  end-page: 297
  ident: CR27
  article-title: Old cogs, new tricks: the evolution of gene expression in a chromatin context
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0105-7
– volume: 150
  start-page: 934
  year: 2012
  end-page: 947
  ident: CR167
  article-title: Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.051
– volume: 58
  start-page: 203
  year: 2015
  end-page: 215
  ident: CR22
  article-title: Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.029
– volume: 375
  start-page: 681
  year: 2022
  end-page: 686
  ident: CR190
  article-title: Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level
  publication-title: Science
  doi: 10.1126/science.abg7216
– volume: 150
  start-page: 1182
  year: 2012
  end-page: 1195
  ident: CR136
  article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.005
– volume: 51
  start-page: 192
  year: 2019
  end-page: 207.e6
  ident: CR177
  article-title: X chromosome domain architecture regulates lifespan but not dosage compensation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.08.004
– year: 2021
  ident: CR188
  article-title: Multifactorial chromatin regulatory landscapes at single cell resolution. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.07.08.451691v1.full
– volume: 37
  start-page: 109799
  year: 2021
  ident: CR61
  article-title: Collective regulation of chromatin modifications predicts replication timing during cell cycle
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109799
– volume: 19
  start-page: 229
  year: 2018
  end-page: 244
  ident: CR93
  article-title: Ten principles of heterochromatin formation and function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.119
– volume: 154
  start-page: 541
  year: 2013
  end-page: 555
  ident: CR158
  article-title: KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.051
– volume: 171
  start-page: 85
  year: 2017
  end-page: 102.e23
  ident: CR178
  article-title: Dynamic control of X chromosome conformation and repression by a histone H4K20 demethylase
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.041
– volume: 575
  start-page: 229
  year: 2019
  end-page: 233
  ident: CR179
  article-title: Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs
  publication-title: Nature
  doi: 10.1038/s41586-019-1668-3
– volume: 4
  year: 2018
  ident: CR208
  article-title: Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in embryos
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat6224
– volume: 590
  start-page: 660
  year: 2021
  end-page: 665
  ident: CR134
  article-title: Loop extrusion as a mechanism for formation of DNA damage repair foci
  publication-title: Nature
  doi: 10.1038/s41586-021-03193-z
– volume: 547
  start-page: 419
  year: 2017
  end-page: 424
  ident: CR88
  article-title: Maternal H3K27me3 controls DNA methylation-independent imprinting
  publication-title: Nature
  doi: 10.1038/nature23262
– volume: 109
  start-page: 745
  year: 2002
  end-page: 756
  ident: CR121
  article-title: Dot1p modulates silencing in yeast by methylation of the nucleosome core
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00759-6
– volume: 23
  start-page: 905
  year: 2021
  end-page: 914
  ident: CR104
  article-title: Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00725-7
– volume: 18
  start-page: 548
  year: 2017
  end-page: 562
  ident: CR2
  article-title: Understanding nucleosome dynamics and their links to gene expression and DNA replication
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.47
– volume: 152
  start-page: 1021
  year: 2013
  end-page: 1036
  ident: CR31
  article-title: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.052
– volume: 365
  start-page: 353
  year: 2019
  end-page: 360
  ident: CR194
  article-title: Resetting histone modifications during human parental-to-zygotic transition
  publication-title: Science
  doi: 10.1126/science.aaw5118
– volume: 21
  start-page: 993
  year: 2011
  end-page: 1004
  ident: CR199
  article-title: Prepatterning of developmental gene expression by modified histones before zygotic genome activation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.10.008
– volume: 28
  start-page: 468
  year: 2008
  end-page: 486
  ident: CR137
  article-title: Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01517-07
– volume: 77
  start-page: 840
  year: 2020
  end-page: 856.e845
  ident: CR81
  article-title: Histone H2AK119 mono-ubiquitination is essential for Polycomb-mediated transcriptional repression
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.11.021
– volume: 25
  start-page: 73
  year: 2018
  end-page: 82
  ident: CR52
  article-title: MLL2 conveys transcription-independent H3K4 trimethylation in oocytes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-017-0013-5
– volume: 117
  start-page: 11459
  year: 2020
  end-page: 11470
  ident: CR164
  article-title: Histone H3K9 methylation promotes formation of genome compartments in via chromosome compaction and perinuclear anchoring
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2002068117
– volume: 30
  start-page: 820
  year: 2020
  end-page: 835.e10
  ident: CR173
  article-title: Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.12.057
– volume: 55
  start-page: 347
  year: 2014
  end-page: 360
  ident: CR92
  article-title: Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.06.005
– volume: 294
  start-page: 1451
  year: 2019
  end-page: 1463
  ident: CR85
  article-title: Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006620
– volume: 12
  year: 2021
  ident: CR225
  article-title: Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26147-5
– volume: 11
  year: 2020
  ident: CR204
  article-title: Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17238-w
– volume: 579
  start-page: 592
  year: 2020
  end-page: 597
  ident: CR224
  article-title: Phase separation directs ubiquitination of gene-body nucleosomes
  publication-title: Nature
  doi: 10.1038/s41586-020-2097-z
– volume: 153
  start-page: 178
  year: 2013
  end-page: 192
  ident: CR168
  article-title: Single-cell dynamics of genome-nuclear lamina interactions
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.028
– volume: 25
  start-page: 3305
  year: 2005
  end-page: 3316
  ident: CR56
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3K36 methylation with transcript elongation
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.8.3305-3316.2005
– volume: 22
  year: 2021
  ident: CR120
  article-title: Nhp2 is a reader of H2AQ105me and part of a network integrating metabolism with rRNA synthesis
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202152435
– volume: 123
  start-page: 581
  year: 2005
  end-page: 592
  ident: CR57
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.023
– volume: 33
  start-page: 4166
  year: 2013
  end-page: 4180
  ident: CR153
  article-title: The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00689-13
– volume: 537
  start-page: 548
  year: 2016
  end-page: 552
  ident: CR34
  article-title: Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition
  publication-title: Nature
  doi: 10.1038/nature19360
– volume: 368
  start-page: 197
  year: 2020
  end-page: 201
  ident: CR108
  article-title: Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking
  publication-title: Science
  doi: 10.1126/science.aaw8806
– volume: 12
  year: 2021
  ident: CR165
  article-title: Complete loss of H3K9 methylation dissolves mouse heterochromatin organization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24532-8
– volume: 547
  start-page: 236
  year: 2017
  end-page: 240
  ident: CR220
  article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
  publication-title: Nature
  doi: 10.1038/nature22822
– volume: 12
  year: 2021
  ident: CR47
  article-title: Enhancer-associated H3K4 methylation safeguards in vitro germline competence
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26065-6
– volume: 77
  start-page: 857
  year: 2020
  end-page: 874.e9
  ident: CR80
  article-title: PRC1 catalytic activity is central to Polycomb system function
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.12.001
– volume: 75
  start-page: 5
  year: 1993
  end-page: 8
  ident: CR3
  article-title: Decoding the nucleosome
  publication-title: Cell
  doi: 10.1016/S0092-8674(05)80078-9
– volume: 20
  start-page: 620
  year: 2018
  end-page: 631
  ident: CR196
  article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– volume: 73
  start-page: 238
  year: 2019
  end-page: 249.e3
  ident: CR186
  article-title: RSC-associated subnucleosomes define MNase-sensitive promoters in yeast
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.046
– volume: 23
  start-page: 1163
  year: 2021
  end-page: 1175
  ident: CR212
  article-title: H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00776-w
– volume: 12
  start-page: 46
  year: 2005
  end-page: 53
  ident: CR110
  article-title: Rapid spontaneous accessibility of nucleosomal DNA
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb869
– volume: 20
  start-page: 868
  year: 2013
  end-page: 875
  ident: CR36
  article-title: Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2599
– volume: 10
  start-page: 697
  year: 2009
  end-page: 708
  ident: CR76
  article-title: Mechanisms of polycomb gene silencing: knowns and unknowns
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2763
– volume: 3
  year: 2014
  ident: CR206
  article-title: Establishment of regions of genomic activity during the maternal to zygotic transition
  publication-title: eLife
  doi: 10.7554/eLife.03737
– volume: 18
  start-page: 1251
  year: 2004
  end-page: 1262
  ident: CR99
  article-title: A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin
  publication-title: Genes Dev.
  doi: 10.1101/gad.300704
– volume: 1863
  start-page: 194567
  year: 2020
  ident: CR48
  article-title: Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2020.194567
– volume: 32
  start-page: 42
  year: 2016
  end-page: 56
  ident: CR122
  article-title: Lateral thinking: how histone modifications regulate gene expression
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.10.007
– volume: 53
  start-page: 539
  year: 2021
  end-page: 550
  ident: CR86
  article-title: H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00820-3
– volume: 21
  start-page: 311
  year: 2019
  end-page: 318
  ident: CR140
  article-title: H4K20me0 recognition by BRCA1–BARD1 directs homologous recombination to sister chromatids
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0282-9
– volume: 484
  start-page: 115
  year: 2012
  end-page: 119
  ident: CR150
  article-title: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome
  publication-title: Nature
  doi: 10.1038/nature10956
– volume: 577
  start-page: 576
  year: 2020
  end-page: 581
  ident: CR154
  article-title: H2A.Z facilitates licensing and activation of early replication origins
  publication-title: Nature
  doi: 10.1038/s41586-019-1877-9
– volume: 361
  year: 2018
  ident: CR215
  article-title: Coactivator condensation at super-enhancers links phase separation and gene control
  publication-title: Science
  doi: 10.1126/science.aar3958
– volume: 2
  year: 2013
  ident: CR205
  article-title: A global change in RNA polymerase II pausing during the midblastula transition
  publication-title: eLife
  doi: 10.7554/eLife.00861
– volume: 363
  start-page: 294
  year: 2019
  end-page: 297
  ident: CR103
  article-title: H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification
  publication-title: Science
  doi: 10.1126/science.aau0583
– volume: 22
  start-page: 767
  year: 2020
  end-page: 778
  ident: CR105
  article-title: Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0536-6
– volume: 19
  start-page: 789
  year: 2018
  end-page: 800
  ident: CR161
  article-title: Organizational principles of 3D genome architecture
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0060-8
– volume: 136
  start-page: 3531
  year: 2009
  end-page: 3542
  ident: CR75
  article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice
  publication-title: Development
  doi: 10.1242/dev.033902
– volume: 65
  start-page: 1023
  year: 1991
  end-page: 1031
  ident: CR17
  article-title: Yeast histone H4 N-terminal sequence is required for promoter activation in vivo
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90554-C
– volume: 6
  year: 2017
  ident: CR60
  article-title: Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity
  publication-title: eLife
  doi: 10.7554/eLife.23249
– volume: 32
  start-page: 224
  year: 2018
  end-page: 229
  ident: CR149
  article-title: A mechanism for epigenetic control of DNA replication
  publication-title: Genes Dev.
  doi: 10.1101/gad.306464.117
– volume: 294
  start-page: 1331
  year: 2001
  end-page: 1334
  ident: CR38
  article-title: Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene
  publication-title: Science
  doi: 10.1126/science.1065683
– volume: 537
  start-page: 558
  year: 2016
  end-page: 562
  ident: CR51
  article-title: Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos
  publication-title: Nature
  doi: 10.1038/nature19362
– volume: 76
  start-page: 660
  year: 2019
  end-page: 675.e9
  ident: CR118
  article-title: Glutarylation of histone H4 lysine 91 regulates chromatin dynamics
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.018
– volume: 18
  start-page: 1263
  year: 2004
  end-page: 1271
  ident: CR123
  article-title: The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
  publication-title: Genes Dev.
  doi: 10.1101/gad.1198204
– volume: 505
  start-page: 564
  year: 2014
  end-page: 568
  ident: CR119
  article-title: Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification
  publication-title: Nature
  doi: 10.1038/nature12819
– volume: 151
  start-page: 994
  year: 2012
  end-page: 1004
  ident: CR101
  article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 3
  year: 2014
  ident: CR113
  article-title: Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription
  publication-title: eLife
  doi: 10.7554/eLife.01632
– volume: 169
  start-page: 780
  year: 2017
  end-page: 791
  ident: CR166
  article-title: Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.022
– volume: 8
  year: 2013
  ident: CR98
  article-title: H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0051765
– volume: 33
  start-page: 799
  year: 2019
  end-page: 813
  ident: CR84
  article-title: Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2
  publication-title: Genes Dev.
  doi: 10.1101/gad.326488.119
– volume: 146
  start-page: dev181180
  year: 2019
  ident: CR102
  article-title: The control of gene expression and cell identity by H3K9 trimethylation
  publication-title: Development
  doi: 10.1242/dev.181180
– volume: 131
  start-page: 58
  year: 2007
  end-page: 69
  ident: CR30
  article-title: Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.016
– volume: 107
  start-page: 21931
  year: 2010
  end-page: 21936
  ident: CR43
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1016071107
– volume: 179
  start-page: 470
  year: 2019
  end-page: 484.e21
  ident: CR214
  article-title: Organization of chromatin by intrinsic and regulated phase separation
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.037
– volume: 216
  start-page: 1959
  year: 2017
  end-page: 1974
  ident: CR143
  article-title: Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201611135
– volume: 10
  year: 2019
  ident: CR147
  article-title: UFL1 promotes histone H4 ufmylation and ATM activation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09175-0
– volume: 72
  start-page: 673
  year: 2018
  end-page: 686.e6
  ident: CR202
  article-title: Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.017
– volume: 547
  start-page: 241
  year: 2017
  end-page: 245
  ident: CR219
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
  doi: 10.1038/nature22989
– volume: 148
  start-page: 558
  year: 1972
  end-page: 567
  ident: CR8
  article-title: The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(72)90174-9
– volume: 350
  start-page: aab2006
  year: 2015
  ident: CR40
  article-title: Disruption of histone methylation in developing sperm impairs offspring health transgenerationally
  publication-title: Science
  doi: 10.1126/science.aab2006
– volume: 21
  year: 2020
  ident: CR46
  article-title: Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-01957-w
– volume: 38
  start-page: 452
  year: 2010
  end-page: 464
  ident: CR83
  article-title: Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.032
– volume: 49
  start-page: 1647
  year: 2017
  end-page: 1653
  ident: CR45
  article-title: Histone H3K4 monomethylation catalyzed by TRR and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3965
– volume: 41
  start-page: 67
  year: 2011
  end-page: 81
  ident: CR97
  article-title: Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.12.016
– volume: 36
  start-page: 153
  year: 2009
  end-page: 163
  ident: CR15
  article-title: A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.07.027
– volume: 29
  start-page: 1487
  year: 2015
  end-page: 1492
  ident: CR79
  article-title: Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation
  publication-title: Genes Dev.
  doi: 10.1101/gad.265439.115
– volume: 179
  start-page: 953
  year: 2019
  end-page: 963.e11
  ident: CR91
  article-title: Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.009
– volume: 102
  start-page: 6344
  year: 2005
  end-page: 6349
  ident: CR67
  article-title: Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502413102
– volume: 19
  year: 2021
  ident: CR127
  article-title: Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility
  publication-title: BMC Biol.
  doi: 10.1186/s12915-021-01017-0
– volume: 31
  start-page: 397
  year: 2013
  end-page: 405
  ident: CR227
  article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.04.004
– volume: 27
  start-page: 389
  year: 2011
  end-page: 396
  ident: CR26
  article-title: Histone modification: cause or cog?
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2011.06.006
– volume: 357
  start-page: 212
  year: 2017
  end-page: 216
  ident: CR89
  article-title: Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition
  publication-title: Science
  doi: 10.1126/science.aam5339
– volume: 129
  start-page: 823
  year: 2007
  end-page: 837
  ident: CR181
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.009
– volume: 16
  start-page: 777
  year: 2009
  end-page: 781
  ident: CR100
  article-title: H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1629
– volume: 56
  start-page: 671
  year: 2021
  end-page: 686.e6
  ident: CR41
  article-title: Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.01.014
– volume: 410
  start-page: 120
  year: 2001
  end-page: 124
  ident: CR95
  article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
  publication-title: Nature
  doi: 10.1038/35065138
– volume: 31
  start-page: 1230
  year: 2021
  end-page: 1244
  ident: CR175
  article-title: Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in
  publication-title: Genome Res.
  doi: 10.1101/gr.273771.120
– volume: 109
  start-page: 801
  year: 2002
  end-page: 806
  ident: CR25
  article-title: Histone methylation: dynamic or static?
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00798-5
– volume: 66
  start-page: 568
  year: 2017
  end-page: 576.e4
  ident: CR44
  article-title: Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.04.018
– volume: 6
  year: 2015
  ident: CR49
  article-title: Embryonic transcription is controlled by maternally defined chromatin state
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10148
– volume: 5
  year: 2014
  ident: CR195
  article-title: Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6868
– volume: 78
  start-page: 236
  year: 2020
  end-page: 249.e7
  ident: CR222
  article-title: Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.005
– volume: 16
  start-page: 258
  year: 2015
  end-page: 264
  ident: CR16
  article-title: 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3931
– volume: 39
  start-page: 886
  year: 2010
  end-page: 900
  ident: CR73
  article-title: Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.08.020
– volume: 243
  start-page: 707
  year: 1968
  end-page: 715
  ident: CR24
  article-title: The methylation of histones during regeneration of the liver
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)81723-4
– volume: 6
  year: 2015
  ident: CR183
  article-title: An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7033
– volume: 111
  start-page: 7096
  year: 2014
  end-page: 7101
  ident: CR144
  article-title: Histone demethylase KDM5B is a key regulator of genome stability
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1324036111
– volume: 499
  start-page: 50
  year: 2013
  end-page: 54
  ident: CR139
  article-title: 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark
  publication-title: Nature
  doi: 10.1038/nature12318
– volume: 11
  start-page: 1037
  year: 2004
  end-page: 1043
  ident: CR14
  article-title: Regulated nucleosome mobility and the histone code
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb851
– volume: 51
  start-page: 941
  year: 2019
  end-page: 946
  ident: CR68
  article-title: Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0428-5
– volume: 15
  start-page: 1122
  year: 2008
  end-page: 1124
  ident: CR125
  article-title: The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1489
– volume: 45
  start-page: 169
  year: 2017
  end-page: 180
  ident: CR156
  article-title: H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw848
– volume: 311
  start-page: 844
  year: 2006
  end-page: 847
  ident: CR13
  article-title: Histone H4-K16 acetylation controls chromatin structure and protein interactions
  publication-title: Science
  doi: 10.1126/science.1124000
– volume: 573
  start-page: 281
  year: 2019
  end-page: 286
  ident: CR62
  article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape
  publication-title: Nature
  doi: 10.1038/s41586-019-1534-3
– volume: 327
  start-page: 996
  year: 2010
  end-page: 1000
  ident: CR58
  article-title: Regulation of alternative splicing by histone modifications
  publication-title: Science
  doi: 10.1126/science.1184208
– volume: 26
  start-page: 2580
  year: 2012
  end-page: 2589
  ident: CR151
  article-title: The role of PR-Set7 in replication licensing depends on Suv4-20h
  publication-title: Genes Dev.
  doi: 10.1101/gad.195636.112
– volume: 570
  start-page: 395
  year: 2019
  end-page: 399
  ident: CR162
  article-title: Heterochromatin drives compartmentalization of inverted and conventional nuclei
  publication-title: Nature
  doi: 10.1038/s41586-019-1275-3
– volume: 523
  start-page: 240
  year: 2015
  end-page: 244
  ident: CR176
  article-title: Condensin-driven remodelling of X chromosome topology during dosage compensation
  publication-title: Nature
  doi: 10.1038/nature14450
– year: 2021
  ident: CR192
  article-title: DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome-wide. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.07.06.451383v1
– volume: 361
  year: 2018
  ident: CR217
  article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription
  publication-title: Science
  doi: 10.1126/science.aar2555
– volume: 356
  year: 2017
  ident: CR90
  article-title: Causal role for inheritance of H3K27me3 in maintaining the OFF state of a HOX gene
  publication-title: Science
  doi: 10.1126/science.aai8236
– volume: 464
  start-page: 922
  year: 2010
  end-page: 926
  ident: CR200
  article-title: Chromatin signature of embryonic pluripotency is established during genome activation
  publication-title: Nature
  doi: 10.1038/nature08866
– volume: 172
  start-page: 993
  year: 2018
  end-page: 1006.e13
  ident: CR50
  article-title: Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.022
– volume: 127
  start-page: 1361
  year: 2006
  end-page: 1373
  ident: CR138
  article-title: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.043
– volume: 126
  year: 2019
  ident: CR185
  article-title: High-resolution chromatin profiling using CUT&RUN
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/cpmb.85
– volume: 33
  start-page: 1619
  year: 2019
  end-page: 1634
  ident: CR223
  article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences
  publication-title: Genes Dev.
  doi: 10.1101/gad.331520.119
– volume: 361
  start-page: 412
  year: 2018
  end-page: 415
  ident: CR216
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
  doi: 10.1126/science.aar4199
– volume: 596
  start-page: 433
  year: 2021
  end-page: 437
  ident: CR141
  article-title: BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination
  publication-title: Nature
  doi: 10.1038/s41586-021-03776-w
– volume: 7
  year: 2016
  ident: CR32
  article-title: Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12284
– volume: 20
  start-page: 8866
  year: 2000
  end-page: 8878
  ident: CR18
  article-title: Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.23.8866-8878.2000
– volume: 35
  start-page: 330
  year: 2019
  end-page: 345
  ident: CR133
  article-title: A snapshot on the chromatin response to DNA double-strand breaks
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.02.003
– volume: 158
  start-page: 673
  year: 2014
  end-page: 688
  ident: CR29
  article-title: H3K4me3 breadth is linked to cell identity and transcriptional consistency
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.027
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  ident: CR11
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 22
  year: 2021
  ident: CR117
  article-title: Succinylation of H3K122 destabilizes nucleosomes and enhances transcription
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051009
– volume: 52
  start-page: 273
  year: 2020
  end-page: 282
  ident: CR109
  article-title: Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0586-5
– volume: 306
  start-page: 1574
  year: 2004
  end-page: 1577
  ident: CR82
  article-title: Chromatin compaction by a Polycomb group protein complex
  publication-title: Science
  doi: 10.1126/science.1100576
– volume: 567
  start-page: 473
  year: 2019
  end-page: 478
  ident: CR7
  article-title: The expanding landscape of ‘oncohistone’ mutations in human cancers
  publication-title: Nature
  doi: 10.1038/s41586-019-1038-1
– volume: 63
  start-page: 180
  year: 2021
  end-page: 187
  ident: CR180
  article-title: A chemical field guide to histone nonenzymatic modifications
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2021.05.002
– volume: 7
  start-page: 2006
  year: 2014
  end-page: 2018
  ident: CR142
  article-title: SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.026
– volume: 210
  start-page: 969
  year: 2018
  end-page: 982
  ident: CR211
  article-title: Distinct roles of two histone methyltransferases in transmitting H3K36me3-based epigenetic memory across generations in
  publication-title: Genetics
  doi: 10.1534/genetics.118.301353
– volume: 17
  start-page: 3155
  year: 1998
  end-page: 3167
  ident: CR19
  article-title: Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.11.3155
– volume: 515
  start-page: 402
  year: 2014
  end-page: 405
  ident: CR160
  article-title: Topologically associating domains are stable units of replication-timing regulation
  publication-title: Nature
  doi: 10.1038/nature13986
– volume: 40
  start-page: 10215
  year: 2012
  end-page: 10227
  ident: CR112
  article-title: Regulation of the nucleosome unwrapping rate controls DNA accessibility
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks747
– volume: 438
  start-page: 1116
  year: 2005
  end-page: 1122
  ident: CR74
  article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
  publication-title: Nature
  doi: 10.1038/nature04219
– volume: 11
  year: 2020
  ident: CR70
  article-title: Histone variant H3.3 residue S31 is essential for gastrulation regardless of the deposition pathway
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15084-4
– volume: 37
  start-page: 57
  year: 2010
  end-page: 66
  ident: CR148
  article-title: HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.012
– volume: 567
  start-page: 414
  year: 2019
  end-page: 419
  ident: CR59
  article-title: Histone H3 trimethylation at lysine 36 guides m A RNA modification co-transcriptionally
  publication-title: Nature
  doi: 10.1038/s41586-019-1016-7
– volume: 76
  start-page: 646
  year: 2019
  end-page: 659.e6
  ident: CR221
  article-title: Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.019
– volume: 38
  start-page: 100942
  year: 2020
  ident: CR5
  article-title: Two genomes, one cell: mitochondrial–nuclear coordination via epigenetic pathways
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2020.01.006
– volume: 574
  start-page: 575
  year: 2019
  end-page: 580
  ident: CR106
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 10
  year: 2019
  ident: CR187
  article-title: CUT&Tag for efficient epigenomic profiling of small samples and single cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09982-5
– volume: 355
  start-page: 227
  year: 2011
  end-page: 238
  ident: CR209
  article-title: Lineage specific trimethylation of H3 on lysine 4 during early embryogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.04.010
– volume: 138
  start-page: 1122
  year: 2009
  end-page: 1136
  ident: CR66
  article-title: Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.031
– volume: 10
  year: 2019
  ident: CR124
  article-title: DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10844-3
– volume: 33
  start-page: 510
  year: 2015
  end-page: 517
  ident: CR231
  article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3199
– volume: 175
  start-page: 1716
  year: 2018
  ident: CR157
  article-title: Cross-talk between lysine-modifying enzymes controls site-specific DNA amplifications
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.018
– volume: 4
  year: 2013
  ident: CR114
  article-title: Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3233
– volume: 1
  year: 2015
  ident: CR77
  article-title: Regulation of gene transcription by Polycomb proteins
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500737
– volume: 183
  start-page: 1772
  year: 2020
  end-page: 1784.e13
  ident: CR218
  article-title: Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.027
– volume: 441
  start-page: 840
  year: 2006
  end-page: 846
  ident: CR33
  article-title: Single-cell proteomic analysis of reveals the architecture of biological noise
  publication-title: Nature
  doi: 10.1038/nature04785
– volume: 47
  start-page: 1149
  year: 2015
  end-page: 1157
  ident: CR28
  article-title: Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3385
– volume: 55
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR94
  article-title: Role of H3K9me3 heterochromatin in cell identity establishment and maintenance
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2019.04.013
– volume: 273
  start-page: 5858
  year: 1998
  end-page: 5868
  ident: CR132
  article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.10.5858
– volume: 34
  start-page: 398
  year: 2020
  end-page: 412
  ident: CR126
  article-title: HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots
  publication-title: Genes Dev.
  doi: 10.1101/gad.333542.119
– year: 2021
  ident: CR130
  article-title: Structural insights into the evolution of the RAG recombinase
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00628-6
– volume: 10
  year: 2019
  ident: CR201
  article-title: The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09582-3
– volume: 448
  start-page: 714
  year: 2007
  end-page: 717
  ident: CR53
  article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
  publication-title: Nature
  doi: 10.1038/nature05987
– volume: 21
  year: 2020
  ident: CR163
  article-title: Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02201-1
– volume: 63
  start-page: 1066
  year: 2016
  end-page: 1079
  ident: CR198
  article-title: Resetting epigenetic memory by reprogramming of histone modifications in mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.032
– volume: 12
  start-page: 401
  year: 2015
  end-page: 403
  ident: CR230
  article-title: Functional annotation of native enhancers with a Cas9–histone demethylase fusion
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3325
– volume: 27
  start-page: 580
  year: 2017
  end-page: 590
  ident: CR129
  article-title: In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites
  publication-title: Genome Res.
  doi: 10.1101/gr.217240.116
– ident: CR9
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  ident: CR10
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 43
  start-page: 7931
  year: 2015
  end-page: 7944
  ident: CR146
  article-title: SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv722
– volume: 567
  start-page: 535
  year: 2019
  end-page: 539
  ident: CR107
  article-title: Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3
  publication-title: Nature
  doi: 10.1038/s41586-019-1024-7
– volume: 279
  start-page: 23859
  year: 2004
  end-page: 23862
  ident: CR72
  article-title: Direct binding of INHAT to H3 tails disrupted by modifications
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C400151200
– volume: 53
  start-page: 551
  year: 2021
  end-page: 563
  ident: CR87
  article-title: Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00821-2
– volume: 21
  start-page: 737
  year: 2020
  end-page: 753
  ident: CR4
  article-title: The evolving metabolic landscape of chromatin biology and epigenetics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0270-8
– volume: 65
  start-page: 432
  year: 2017
  end-page: 446.e5
  ident: CR171
  article-title: Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.009
– volume: 7
  start-page: 747
  year: 2012
  end-page: 757
  ident: CR197
  article-title: Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation
  publication-title: Epigenetics
  doi: 10.4161/epi.20584
– volume: 280
  start-page: 17732
  year: 2005
  end-page: 17736
  ident: CR54
  article-title: Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500796200
– volume: 8
  year: 2019
  ident: CR169
  article-title: H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis
  publication-title: eLife
  doi: 10.7554/eLife.49278
– volume: 76
  start-page: 909
  year: 2019
  end-page: 921.e903
  ident: CR23
  article-title: Recognition of histone crotonylation by TAF14 links metabolic state to gene expression
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.029
– volume: 22
  year: 2021
  ident: CR20
  article-title: Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202152774
– volume: 410
  start-page: 116
  year: 2001
  end-page: 120
  ident: CR96
  article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
  publication-title: Nature
  doi: 10.1038/35065132
– volume: 372
  start-page: 371
  year: 2021
  end-page: 378
  ident: CR159
  article-title: Replication timing maintains the global epigenetic state in human cells
  publication-title: Science
  doi: 10.1126/science.aba5545
– volume: 19
  year: 2018
  ident: CR128
  article-title: Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1483-4
– volume: 31
  start-page: 1351
  year: 2021
  ident: CR213
  article-title: and meiotic cohesin proteins cooperatively promote DNA double-strand break formation in mammalian spermatocytes
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.03.002
– volume: 2
  start-page: 470
  year: 2012
  end-page: 477
  ident: CR63
  article-title: Three distinct patterns of histone H3Y41 phosphorylation mark active genes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.08.016
– volume: 12
  year: 2021
  ident: CR235
  article-title: TALEN outperforms Cas9 in editing heterochromatin target sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20672-5
– volume: 10
  year: 2019
  ident: CR210
  article-title: Sperm-inherited H3K27me3 impacts offspring transcription and development in
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09141-w
– volume: 21
  start-page: 522
  year: 2020
  end-page: 541
  ident: CR6
  article-title: The roles of histone variants in fine-tuning chromatin organization and function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0262-8
– volume: 583
  start-page: 852
  year: 2020
  end-page: 857
  ident: CR69
  article-title: Histone H3.3 phosphorylation amplifies stimulation-induced transcription
  publication-title: Nature
  doi: 10.1038/s41586-020-2533-0
– volume: 146
  start-page: 1016
  year: 2011
  end-page: 1028
  ident: CR21
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 50
  start-page: 1452
  year: 2018
  end-page: 1462
  ident: CR174
  article-title: Promoter bivalency favors an open chromatin architecture in embryonic stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0218-5
– volume: 21
  start-page: 135
  year: 2017
  end-page: 143.e136
  ident: CR39
  article-title: H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.03.003
– volume: 100
  start-page: 57
  year: 2000
  end-page: 70
  ident: CR131
  article-title: The hallmarks of cancer
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– volume: 81
  start-page: 4736
  year: 2021
  end-page: 4746.e5
  ident: CR189
  article-title: Simultaneous profiling of multiple chromatin proteins in the same cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.09.019
– volume: 290
  start-page: 22612
  year: 2015
  end-page: 22621
  ident: CR64
  article-title: Histone core phosphorylation regulates DNA accessibility
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.661363
– volume: 45
  start-page: 9901
  year: 2017
  end-page: 9916
  ident: CR233
  article-title: dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx578
– volume: 12
  start-page: 2159
  year: 2002
  end-page: 2166
  ident: CR226
  article-title: Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01391-X
– volume: 17
  start-page: 425
  year: 2009
  end-page: 434
  ident: CR203
  article-title: A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in embryos
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.08.005
– volume: 11
  start-page: 709
  year: 2003
  end-page: 719
  ident: CR37
  article-title: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00092-3
– volume: 529
  start-page: 418
  year: 2016
  end-page: 422
  ident: CR170
  article-title: Super-resolution imaging reveals distinct chromatin folding for different epigenetic states
  publication-title: Nature
  doi: 10.1038/nature16496
– volume: 33
  start-page: 403
  year: 2019
  end-page: 417
  ident: CR207
  article-title: Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in
  publication-title: Genes Dev.
  doi: 10.1101/gad.321646.118
– volume: 537
  start-page: 558
  year: 2016
  ident: 468_CR51
  publication-title: Nature
  doi: 10.1038/nature19362
– volume: 17
  start-page: 425
  year: 2009
  ident: 468_CR203
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.08.005
– volume: 485
  start-page: 376
  year: 2012
  ident: 468_CR11
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 2
  year: 2013
  ident: 468_CR205
  publication-title: eLife
  doi: 10.7554/eLife.00861
– volume: 109
  start-page: 801
  year: 2002
  ident: 468_CR25
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00798-5
– ident: 468_CR9
– volume: 175
  start-page: 1716
  year: 2018
  ident: 468_CR157
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.018
– volume: 21
  year: 2020
  ident: 468_CR163
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02201-1
– volume: 575
  start-page: 229
  year: 2019
  ident: 468_CR179
  publication-title: Nature
  doi: 10.1038/s41586-019-1668-3
– volume: 109
  start-page: 745
  year: 2002
  ident: 468_CR121
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00759-6
– volume: 151
  start-page: 994
  year: 2012
  ident: 468_CR101
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 38
  start-page: 100942
  year: 2020
  ident: 468_CR5
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2020.01.006
– volume: 20
  start-page: 868
  year: 2013
  ident: 468_CR36
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2599
– volume: 28
  start-page: 468
  year: 2008
  ident: 468_CR137
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01517-07
– volume: 136
  start-page: 3531
  year: 2009
  ident: 468_CR75
  publication-title: Development
  doi: 10.1242/dev.033902
– volume: 17
  start-page: 2886
  year: 1998
  ident: 468_CR228
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.10.2886
– volume: 169
  start-page: 780
  year: 2017
  ident: 468_CR166
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.022
– volume: 153
  start-page: 178
  year: 2013
  ident: 468_CR168
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.028
– volume: 148
  start-page: 558
  year: 1972
  ident: 468_CR8
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(72)90174-9
– volume: 573
  start-page: 281
  year: 2019
  ident: 468_CR62
  publication-title: Nature
  doi: 10.1038/s41586-019-1534-3
– volume: 294
  start-page: 1331
  year: 2001
  ident: 468_CR38
  publication-title: Science
  doi: 10.1126/science.1065683
– volume: 7
  start-page: 747
  year: 2012
  ident: 468_CR197
  publication-title: Epigenetics
  doi: 10.4161/epi.20584
– volume: 375
  start-page: 681
  year: 2022
  ident: 468_CR190
  publication-title: Science
  doi: 10.1126/science.abg7216
– volume: 34
  start-page: 398
  year: 2020
  ident: 468_CR126
  publication-title: Genes Dev.
  doi: 10.1101/gad.333542.119
– volume: 47
  start-page: 1149
  year: 2015
  ident: 468_CR28
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3385
– volume: 154
  start-page: 541
  year: 2013
  ident: 468_CR158
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.051
– volume: 12
  start-page: 2159
  year: 2002
  ident: 468_CR226
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01391-X
– volume: 11
  start-page: 1037
  year: 2004
  ident: 468_CR14
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb851
– volume: 361
  start-page: 412
  year: 2018
  ident: 468_CR216
  publication-title: Science
  doi: 10.1126/science.aar4199
– volume: 43
  start-page: 7931
  year: 2015
  ident: 468_CR146
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv722
– year: 2021
  ident: 468_CR188
  publication-title: bioRxiv
  doi: 10.1101/2021.07.08.451691v1.full
– volume: 537
  start-page: 553
  year: 2016
  ident: 468_CR35
  publication-title: Nature
  doi: 10.1038/nature19361
– volume: 75
  start-page: 5
  year: 1993
  ident: 468_CR3
  publication-title: Cell
  doi: 10.1016/S0092-8674(05)80078-9
– volume: 574
  start-page: 575
  year: 2019
  ident: 468_CR106
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 51
  start-page: 192
  year: 2019
  ident: 468_CR177
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.08.004
– volume: 216
  start-page: 1959
  year: 2017
  ident: 468_CR143
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201611135
– volume: 7
  year: 2016
  ident: 468_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12284
– volume: 273
  start-page: 5858
  year: 1998
  ident: 468_CR132
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.10.5858
– volume: 18
  start-page: 548
  year: 2017
  ident: 468_CR2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.47
– volume: 53
  start-page: 551
  year: 2021
  ident: 468_CR87
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00821-2
– volume: 567
  start-page: 414
  year: 2019
  ident: 468_CR59
  publication-title: Nature
  doi: 10.1038/s41586-019-1016-7
– volume: 6
  year: 2017
  ident: 468_CR60
  publication-title: eLife
  doi: 10.7554/eLife.23249
– volume: 596
  start-page: 433
  year: 2021
  ident: 468_CR141
  publication-title: Nature
  doi: 10.1038/s41586-021-03776-w
– volume: 36
  start-page: 153
  year: 2009
  ident: 468_CR15
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.07.027
– volume: 19
  start-page: 229
  year: 2018
  ident: 468_CR93
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.119
– volume: 527
  start-page: 389
  year: 2015
  ident: 468_CR135
  publication-title: Nature
  doi: 10.1038/nature15401
– volume: 326
  start-page: 289
  year: 2009
  ident: 468_CR10
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 8
  year: 2019
  ident: 468_CR169
  publication-title: eLife
  doi: 10.7554/eLife.49278
– volume: 63
  start-page: 180
  year: 2021
  ident: 468_CR180
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2021.05.002
– volume: 290
  start-page: 22612
  year: 2015
  ident: 468_CR64
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.661363
– volume: 16
  start-page: 777
  year: 2009
  ident: 468_CR100
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1629
– volume: 19
  year: 2018
  ident: 468_CR128
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1483-4
– volume: 65
  start-page: 432
  year: 2017
  ident: 468_CR171
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.009
– volume: 13
  start-page: 436
  year: 2012
  ident: 468_CR1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3382
– volume: 3
  year: 2014
  ident: 468_CR206
  publication-title: eLife
  doi: 10.7554/eLife.03737
– volume: 158
  start-page: 673
  year: 2014
  ident: 468_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.027
– volume: 21
  year: 2020
  ident: 468_CR46
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-01957-w
– volume: 4
  year: 2018
  ident: 468_CR208
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat6224
– volume: 448
  start-page: 714
  year: 2007
  ident: 468_CR53
  publication-title: Nature
  doi: 10.1038/nature05987
– volume: 72
  start-page: 673
  year: 2018
  ident: 468_CR202
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.017
– volume: 11
  start-page: 709
  year: 2003
  ident: 468_CR37
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00092-3
– volume: 102
  start-page: 6344
  year: 2005
  ident: 468_CR67
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502413102
– volume: 77
  start-page: 857
  year: 2020
  ident: 468_CR80
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.12.001
– volume: 32
  start-page: 224
  year: 2018
  ident: 468_CR149
  publication-title: Genes Dev.
  doi: 10.1101/gad.306464.117
– volume: 179
  start-page: 953
  year: 2019
  ident: 468_CR91
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.009
– volume: 39
  start-page: 6465
  year: 2011
  ident: 468_CR115
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr304
– volume: 52
  start-page: 273
  year: 2020
  ident: 468_CR109
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0586-5
– volume: 590
  start-page: 660
  year: 2021
  ident: 468_CR134
  publication-title: Nature
  doi: 10.1038/s41586-021-03193-z
– volume: 33
  start-page: 4166
  year: 2013
  ident: 468_CR153
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00689-13
– volume: 26
  start-page: 2580
  year: 2012
  ident: 468_CR151
  publication-title: Genes Dev.
  doi: 10.1101/gad.195636.112
– volume: 10
  year: 2019
  ident: 468_CR187
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09982-5
– volume: 294
  start-page: 1451
  year: 2019
  ident: 468_CR85
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006620
– volume: 15
  start-page: 1122
  year: 2008
  ident: 468_CR125
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1489
– volume: 464
  start-page: 922
  year: 2010
  ident: 468_CR200
  publication-title: Nature
  doi: 10.1038/nature08866
– volume: 372
  start-page: 371
  year: 2021
  ident: 468_CR159
  publication-title: Science
  doi: 10.1126/science.aba5545
– volume: 18
  start-page: 1251
  year: 2004
  ident: 468_CR99
  publication-title: Genes Dev.
  doi: 10.1101/gad.300704
– volume: 22
  year: 2021
  ident: 468_CR117
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051009
– volume: 37
  start-page: 109799
  year: 2021
  ident: 468_CR61
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109799
– volume: 51
  start-page: 786
  year: 1964
  ident: 468_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.51.5.786
– volume: 30
  start-page: 820
  year: 2020
  ident: 468_CR173
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.12.057
– volume: 58
  start-page: 203
  year: 2015
  ident: 468_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.029
– volume: 55
  start-page: 1
  year: 2019
  ident: 468_CR94
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2019.04.013
– volume: 146
  start-page: dev181180
  year: 2019
  ident: 468_CR102
  publication-title: Development
  doi: 10.1242/dev.181180
– volume: 49
  start-page: 1647
  year: 2017
  ident: 468_CR45
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3965
– volume: 33
  start-page: 799
  year: 2019
  ident: 468_CR84
  publication-title: Genes Dev.
  doi: 10.1101/gad.326488.119
– volume: 547
  start-page: 419
  year: 2017
  ident: 468_CR88
  publication-title: Nature
  doi: 10.1038/nature23262
– volume: 4
  year: 2013
  ident: 468_CR114
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3233
– volume: 10
  start-page: 697
  year: 2009
  ident: 468_CR76
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2763
– volume: 172
  start-page: 993
  year: 2018
  ident: 468_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.022
– volume: 45
  start-page: 9901
  year: 2017
  ident: 468_CR233
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx578
– volume: 38
  start-page: 50
  year: 2020
  ident: 468_CR229
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0296-7
– volume: 55
  start-page: 68
  year: 2019
  ident: 468_CR234
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.07.005
– volume: 567
  start-page: 473
  year: 2019
  ident: 468_CR7
  publication-title: Nature
  doi: 10.1038/s41586-019-1038-1
– volume: 459
  start-page: 108
  year: 2009
  ident: 468_CR42
  publication-title: Nature
  doi: 10.1038/nature07829
– volume: 127
  start-page: 1361
  year: 2006
  ident: 468_CR138
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.043
– volume: 279
  start-page: 23859
  year: 2004
  ident: 468_CR72
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C400151200
– volume: 12
  start-page: 2387
  year: 2021
  ident: 468_CR193
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22636-9
– volume: 111
  start-page: 7096
  year: 2014
  ident: 468_CR144
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1324036111
– volume: 12
  year: 2021
  ident: 468_CR165
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24532-8
– volume: 6
  year: 2015
  ident: 468_CR183
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7033
– volume: 66
  start-page: 568
  year: 2017
  ident: 468_CR44
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.04.018
– volume: 7
  start-page: 2006
  year: 2014
  ident: 468_CR142
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.026
– volume: 547
  start-page: 236
  year: 2017
  ident: 468_CR220
  publication-title: Nature
  doi: 10.1038/nature22822
– volume: 171
  start-page: 85
  year: 2017
  ident: 468_CR178
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.041
– volume: 583
  start-page: 852
  year: 2020
  ident: 468_CR69
  publication-title: Nature
  doi: 10.1038/s41586-020-2533-0
– volume: 361
  year: 2018
  ident: 468_CR217
  publication-title: Science
  doi: 10.1126/science.aar2555
– volume: 3
  year: 2014
  ident: 468_CR113
  publication-title: eLife
  doi: 10.7554/eLife.01632
– volume: 7
  start-page: 1395
  year: 1988
  ident: 468_CR182
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02956.x
– volume: 8
  year: 2017
  ident: 468_CR232
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15315
– volume: 339
  start-page: 698
  year: 2013
  ident: 468_CR78
  publication-title: Science
  doi: 10.1126/science.1231382
– volume: 29
  start-page: 1487
  year: 2015
  ident: 468_CR79
  publication-title: Genes Dev.
  doi: 10.1101/gad.265439.115
– volume: 438
  start-page: 1116
  year: 2005
  ident: 468_CR74
  publication-title: Nature
  doi: 10.1038/nature04219
– volume: 33
  start-page: 1619
  year: 2019
  ident: 468_CR223
  publication-title: Genes Dev.
  doi: 10.1101/gad.331520.119
– volume: 547
  start-page: 241
  year: 2017
  ident: 468_CR219
  publication-title: Nature
  doi: 10.1038/nature22989
– volume: 37
  start-page: 57
  year: 2010
  ident: 468_CR148
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.012
– volume: 117
  start-page: 11459
  year: 2020
  ident: 468_CR164
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2002068117
– volume: 361
  year: 2018
  ident: 468_CR215
  publication-title: Science
  doi: 10.1126/science.aar3958
– year: 2021
  ident: 468_CR130
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00628-6
– volume: 5
  start-page: 917
  year: 2000
  ident: 468_CR65
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80257-9
– volume: 1
  year: 2015
  ident: 468_CR77
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500737
– volume: 22
  year: 2021
  ident: 468_CR120
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202152435
– volume: 20
  start-page: 8866
  year: 2000
  ident: 468_CR18
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.23.8866-8878.2000
– volume: 23
  start-page: 905
  year: 2021
  ident: 468_CR104
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00725-7
– volume: 22
  year: 2021
  ident: 468_CR20
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202152774
– volume: 11
  year: 2020
  ident: 468_CR70
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15084-4
– volume: 50
  start-page: 1452
  year: 2018
  ident: 468_CR174
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0218-5
– volume: 12
  year: 2021
  ident: 468_CR235
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20672-5
– volume: 38
  start-page: 452
  year: 2010
  ident: 468_CR83
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.032
– volume: 12
  year: 2021
  ident: 468_CR225
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26147-5
– volume: 20
  start-page: 620
  year: 2018
  ident: 468_CR196
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– volume: 12
  start-page: 401
  year: 2015
  ident: 468_CR230
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3325
– volume: 31
  start-page: 397
  year: 2013
  ident: 468_CR227
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.04.004
– volume: 18
  start-page: 1263
  year: 2004
  ident: 468_CR123
  publication-title: Genes Dev.
  doi: 10.1101/gad.1198204
– volume: 6
  year: 2017
  ident: 468_CR184
  publication-title: eLife
  doi: 10.7554/eLife.21856
– volume: 17
  start-page: 3155
  year: 1998
  ident: 468_CR19
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.11.3155
– volume: 8
  year: 2013
  ident: 468_CR98
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0051765
– volume: 5
  year: 2014
  ident: 468_CR195
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6868
– volume: 280
  start-page: 17732
  year: 2005
  ident: 468_CR54
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500796200
– volume: 6
  year: 2015
  ident: 468_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10148
– volume: 65
  start-page: 1023
  year: 1991
  ident: 468_CR17
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90554-C
– volume: 76
  start-page: 646
  year: 2019
  ident: 468_CR221
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.019
– volume: 21
  start-page: 522
  year: 2020
  ident: 468_CR6
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0262-8
– volume: 107
  start-page: 21931
  year: 2010
  ident: 468_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1016071107
– volume: 537
  start-page: 548
  year: 2016
  ident: 468_CR34
  publication-title: Nature
  doi: 10.1038/nature19360
– volume: 100
  start-page: 57
  year: 2000
  ident: 468_CR131
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– volume: 27
  start-page: 580
  year: 2017
  ident: 468_CR129
  publication-title: Genome Res.
  doi: 10.1101/gr.217240.116
– volume: 51
  start-page: 941
  year: 2019
  ident: 468_CR68
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0428-5
– volume: 27
  start-page: 389
  year: 2011
  ident: 468_CR26
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2011.06.006
– volume: 56
  start-page: 671
  year: 2021
  ident: 468_CR41
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.01.014
– volume: 73
  start-page: 238
  year: 2019
  ident: 468_CR186
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.046
– volume: 19
  year: 2021
  ident: 468_CR127
  publication-title: BMC Biol.
  doi: 10.1186/s12915-021-01017-0
– volume: 410
  start-page: 120
  year: 2001
  ident: 468_CR95
  publication-title: Nature
  doi: 10.1038/35065138
– volume: 311
  start-page: 844
  year: 2006
  ident: 468_CR13
  publication-title: Science
  doi: 10.1126/science.1124000
– volume: 138
  start-page: 1122
  year: 2009
  ident: 468_CR66
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.031
– volume: 16
  start-page: 258
  year: 2015
  ident: 468_CR16
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3931
– volume: 152
  start-page: 859
  year: 2013
  ident: 468_CR116
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.032
– volume: 410
  start-page: 116
  year: 2001
  ident: 468_CR96
  publication-title: Nature
  doi: 10.1038/35065132
– volume: 78
  start-page: 236
  year: 2020
  ident: 468_CR222
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.005
– volume: 131
  start-page: 58
  year: 2007
  ident: 468_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.016
– volume: 150
  start-page: 934
  year: 2012
  ident: 468_CR167
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.051
– volume: 2
  start-page: 470
  year: 2012
  ident: 468_CR63
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.08.016
– volume: 523
  start-page: 240
  year: 2015
  ident: 468_CR176
  publication-title: Nature
  doi: 10.1038/nature14450
– volume: 10
  year: 2019
  ident: 468_CR201
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09582-3
– volume: 408
  start-page: 187
  year: 2011
  ident: 468_CR111
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.01.003
– volume: 12
  year: 2021
  ident: 468_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26065-6
– volume: 26
  start-page: 9185
  year: 2006
  ident: 468_CR55
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01529-06
– volume: 567
  start-page: 535
  year: 2019
  ident: 468_CR107
  publication-title: Nature
  doi: 10.1038/s41586-019-1024-7
– volume: 350
  start-page: aab2006
  year: 2015
  ident: 468_CR40
  publication-title: Science
  doi: 10.1126/science.aab2006
– volume: 21
  start-page: 311
  year: 2019
  ident: 468_CR140
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0282-9
– volume: 33
  start-page: 510
  year: 2015
  ident: 468_CR231
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3199
– volume: 77
  start-page: 840
  year: 2020
  ident: 468_CR81
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.11.021
– volume: 357
  start-page: 212
  year: 2017
  ident: 468_CR89
  publication-title: Science
  doi: 10.1126/science.aam5339
– volume: 210
  start-page: 969
  year: 2018
  ident: 468_CR211
  publication-title: Genetics
  doi: 10.1534/genetics.118.301353
– volume: 53
  start-page: 539
  year: 2021
  ident: 468_CR86
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00820-3
– volume: 499
  start-page: 50
  year: 2013
  ident: 468_CR139
  publication-title: Nature
  doi: 10.1038/nature12318
– volume: 484
  start-page: 115
  year: 2012
  ident: 468_CR150
  publication-title: Nature
  doi: 10.1038/nature10956
– volume: 10
  year: 2019
  ident: 468_CR124
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10844-3
– volume: 21
  start-page: 993
  year: 2011
  ident: 468_CR199
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.10.008
– volume: 441
  start-page: 840
  year: 2006
  ident: 468_CR33
  publication-title: Nature
  doi: 10.1038/nature04785
– volume: 1863
  start-page: 194567
  year: 2020
  ident: 468_CR48
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2020.194567
– volume: 25
  start-page: 3305
  year: 2005
  ident: 468_CR56
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.8.3305-3316.2005
– volume: 306
  start-page: 1574
  year: 2004
  ident: 468_CR82
  publication-title: Science
  doi: 10.1126/science.1100576
– volume: 76
  start-page: 909
  year: 2019
  ident: 468_CR23
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.029
– volume: 12
  start-page: 46
  year: 2005
  ident: 468_CR110
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb869
– volume: 77
  start-page: 825
  year: 2020
  ident: 468_CR172
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.11.011
– volume: 76
  start-page: 660
  year: 2019
  ident: 468_CR118
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.018
– volume: 20
  start-page: 199
  year: 2005
  ident: 468_CR71
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.08.032
– volume: 12
  start-page: 1086
  year: 2010
  ident: 468_CR152
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2113
– volume: 365
  start-page: 353
  year: 2019
  ident: 468_CR194
  publication-title: Science
  doi: 10.1126/science.aaw5118
– volume: 123
  start-page: 581
  year: 2005
  ident: 468_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.023
– volume: 577
  start-page: 576
  year: 2020
  ident: 468_CR154
  publication-title: Nature
  doi: 10.1038/s41586-019-1877-9
– volume: 150
  start-page: 1182
  year: 2012
  ident: 468_CR136
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.005
– volume: 129
  start-page: 823
  year: 2007
  ident: 468_CR181
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.009
– volume: 243
  start-page: 707
  year: 1968
  ident: 468_CR24
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)81723-4
– volume: 20
  start-page: 283
  year: 2019
  ident: 468_CR27
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0105-7
– volume: 39
  start-page: 886
  year: 2010
  ident: 468_CR73
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.08.020
– volume: 33
  start-page: 403
  year: 2019
  ident: 468_CR207
  publication-title: Genes Dev.
  doi: 10.1101/gad.321646.118
– volume: 55
  start-page: 347
  year: 2014
  ident: 468_CR92
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.06.005
– volume: 21
  start-page: 287
  year: 2019
  ident: 468_CR191
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0248-3
– volume: 515
  start-page: 402
  year: 2014
  ident: 468_CR160
  publication-title: Nature
  doi: 10.1038/nature13986
– volume: 505
  start-page: 564
  year: 2014
  ident: 468_CR119
  publication-title: Nature
  doi: 10.1038/nature12819
– volume: 11
  year: 2020
  ident: 468_CR204
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17238-w
– volume: 10
  year: 2019
  ident: 468_CR147
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09175-0
– volume: 23
  start-page: 1163
  year: 2021
  ident: 468_CR212
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00776-w
– volume: 579
  start-page: 592
  year: 2020
  ident: 468_CR224
  publication-title: Nature
  doi: 10.1038/s41586-020-2097-z
– volume: 32
  start-page: 42
  year: 2016
  ident: 468_CR122
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.10.007
– volume: 22
  start-page: 767
  year: 2020
  ident: 468_CR105
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0536-6
– year: 2021
  ident: 468_CR192
  publication-title: bioRxiv
  doi: 10.1101/2021.07.06.451383v1
– volume: 368
  start-page: 197
  year: 2020
  ident: 468_CR108
  publication-title: Science
  doi: 10.1126/science.aaw8806
– volume: 45
  start-page: 169
  year: 2017
  ident: 468_CR156
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw848
– volume: 570
  start-page: 395
  year: 2019
  ident: 468_CR162
  publication-title: Nature
  doi: 10.1038/s41586-019-1275-3
– volume: 355
  start-page: 227
  year: 2011
  ident: 468_CR209
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.04.010
– volume: 10
  year: 2019
  ident: 468_CR210
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09141-w
– volume: 41
  start-page: 67
  year: 2011
  ident: 468_CR97
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.12.016
– volume: 327
  start-page: 996
  year: 2010
  ident: 468_CR58
  publication-title: Science
  doi: 10.1126/science.1184208
– volume: 43
  start-page: 2560
  year: 2015
  ident: 468_CR155
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv090
– volume: 31
  start-page: 1230
  year: 2021
  ident: 468_CR175
  publication-title: Genome Res.
  doi: 10.1101/gr.273771.120
– volume: 183
  start-page: 1772
  year: 2020
  ident: 468_CR218
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.027
– volume: 529
  start-page: 418
  year: 2016
  ident: 468_CR170
  publication-title: Nature
  doi: 10.1038/nature16496
– volume: 25
  start-page: 73
  year: 2018
  ident: 468_CR52
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-017-0013-5
– volume: 35
  start-page: 330
  year: 2019
  ident: 468_CR133
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.02.003
– volume: 19
  start-page: 789
  year: 2018
  ident: 468_CR161
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0060-8
– volume: 40
  start-page: 10215
  year: 2012
  ident: 468_CR112
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks747
– volume: 111
  start-page: 9169
  year: 2014
  ident: 468_CR145
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1403565111
– volume: 152
  start-page: 1021
  year: 2013
  ident: 468_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.052
– volume: 21
  start-page: 737
  year: 2020
  ident: 468_CR4
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0270-8
– volume: 81
  start-page: 4736
  year: 2021
  ident: 468_CR189
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.09.019
– volume: 363
  start-page: 294
  year: 2019
  ident: 468_CR103
  publication-title: Science
  doi: 10.1126/science.aau0583
– volume: 31
  start-page: 1351
  year: 2021
  ident: 468_CR213
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.03.002
– volume: 146
  start-page: 1016
  year: 2011
  ident: 468_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 63
  start-page: 1066
  year: 2016
  ident: 468_CR198
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.032
– volume: 356
  year: 2017
  ident: 468_CR90
  publication-title: Science
  doi: 10.1126/science.aai8236
– volume: 126
  year: 2019
  ident: 468_CR185
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/cpmb.85
– volume: 179
  start-page: 470
  year: 2019
  ident: 468_CR214
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.037
– volume: 21
  start-page: 135
  year: 2017
  ident: 468_CR39
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.03.003
SSID ssj0016173
Score 2.74818
SecondaryResourceType review_article
Snippet Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 563
SubjectTerms 631/208/176
631/208/177
631/208/200
631/337/100/2285
631/45/147
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Deoxyribonucleic acid
DNA
DNA - genetics
DNA biosynthesis
DNA Repair
DNA Replication
Gene Function
Gene mapping
Genomes
Histones
Histones - genetics
Histones - metabolism
Human Genetics
Post-translation
Protein Processing, Post-Translational
Recombination
Review Article
Translation
Title Histone post-translational modifications — cause and consequence of genome function
URI https://link.springer.com/article/10.1038/s41576-022-00468-7
https://www.ncbi.nlm.nih.gov/pubmed/35338361
https://www.proquest.com/docview/2703231076
https://www.proquest.com/docview/2644006577
Volume 23
WOSCitedRecordID wos000773186600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9sw9LEkK-zSrlu3Zs2CBrttIrUTW_JptKFhhzWEsobcjCLJUGjsLHYKu-1H9Bf2l_Q9WUkYZb3s8i6WZVnv6X3rPYDPYWIyZZWiyzGSk8rAZRZobiMpo3mcDKyrxDT9IcZjOZslE-9wK31a5YYnOkZtCk0-8l6IpEm6iIi_LX9x6hpF0VXfQqMBLaqSELrUvck2ihDXEeYAGTCnmpf-0sxpX_ZKFFyC0m9DTiai5OJvwfRE23wSKXUCaHTwv0t_Dfte9WRnNa0cwgubv4G9uhnl77dw7SqG5JYti7LiFcmwW-8pZIvCUEpR7d1jD3_umVbr0jKVG6Z3-disyBgVfV1YRvKSRh_B9eji5_A7900XuEbNqOJahfMg0ToUVkrkfTLSYTLIUG06tZEwSs-RtSbJQNrYZJmYW2ONVhK1AIHiHk3ed9DMcbHHwKhdjBWIloHVuMVkm6ExqQIdmMiIxLQh2Ox4qn1FcmqMcZu6yHhfpjWWUsRS6rCUijZ82b6zrOtxPDu6s8FI6s9mme7Q0YZP28d4qihUonJbrHEM_S9qZwKneF8TwPZz_YjM-jhow9cNRewm__daPjy_lhN4FTpqpPS1DjSr1dp-hJf6rropV11oiKspwZlwUCKUw6ALrfOL8eSq6-ge4Xhy-QiR9QKw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VAoJL-YctBYwEJ7DaeDdr54AQKlStuqw4tKg312tPJKQ2WZosVW99CJ6Dh-JJmHGSXaGK3nrgnIljZ775s8czAK9UFnKHzvHlGCPZZZAmT7zE1Jh0MswGGCsxfR3p8dgcHGRfluBXdxeG0yo7nRgVdSg975GvK4Im-yJ6-H76XXLXKD5d7VpoNLDYxbNTCtmqdzsfib-vldr6tLe5LduuAtKT6a-ld2qSZN4rjcaQcJvUq2yQk1-wgakOzk9Id2TZwOAw5LmeYMDgnSEzp8meUUxH416D61zJjiXKbM5TSjhUiAn9RCW5xmZ7SWejb9YrMpSa032V5JDUSP23Ibzg3V44mY0Gb-vO__ar7sJK61qLD40s3IMlLO7DzabZ5tkD2I8VUQoU07KqZc02-qjdCRXHZeCUqWb3Uvw-_ym8m1UoXBGEX-SbizIXXNT2GAX7A0z9EPavZE2PYLmgyT4Bwe1wUJMDNEBPLOXYk4Jll_gkpEFnoQdJx2Hr24rr3PjjyMaT_76xDSosocJGVFjdgzfzd6ZNvZFLqdc6BNhW91R2wf4evJw_Jq3BR0GuwHJGNLxe8j41DfG4Adz8c_2Uty2GSQ_edghcDP7vuaxePpcXcGt77_PIjnbGu0_htoqSwKl6a7Bcn8zwGdzwP-pv1cnzKFMCDq8amX8As3RatA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLSAuLT8FlhYwEpyotY03iZ1DVbW0K6pWqxWiqDfXazsSUpssTZaqtz4ET9PH4UmYyc-uUEVvPXCO49jx55lvPOMZgPcicanxxtDlGMWJMnCVBpb7SKloHCehrzIxfTuUw6E6Pk5GC3Dd3oWhsMpWJlaC2uWWzsh7AqFJXETGvbQJixjtDrYmPzhVkCJPa1tOo4bIgb-8QPOt2NzfxbX-IMRg7-unz7ypMMAt0oCSWyPGQWKtkF4p3OgqsiIJU-QIGz6SztgxypEkCZWPXZrKsXfeWaNQ5UnUbWjfYb_3YFEiyQg7sLizNxx9mfkw4tq_HWA7Thk3mys7G33VK1BtSgr-FZwMVMXl32rxBte94aet1N9g-X_-cY9hqSHdbLveJU9gwWdP4UFdhvPyGRxVuVIyzyZ5UfKStPdpc0bKznJHwVT1uSb7ffWLWTMtPDOZY3Yeic7ylFG62zPPiClQ6xU4upM5PYdOhoN9CYwK5XiJ1Cj0FpeXrFI0o01gAxc5mbguBO1qa9vkYqeSIKe6ignoK10jRCNCdIUQLbvwcfbOpM5EcmvrtRYNupFKhZ5DoQvvZo9RnpCTyGQ-n2Ibmi_yUoldvKjBN_tcP6IDjTjownqLxnnn_x7Lq9vH8hYeIiD14f7wYBUeiWpTUAzfGnTK86l_Dfftz_J7cf6m2WAMTu4amn8AV39lEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+post-translational+modifications+%E2%80%94+cause+and+consequence+of+genome+function&rft.jtitle=Nature+reviews.+Genetics&rft.au=Mill%C3%A1n-Zambrano%2C+Gonzalo&rft.au=Burton%2C+Adam&rft.au=Bannister%2C+Andrew+J&rft.au=Schneider%2C+Robert&rft.date=2022-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=23&rft.issue=9&rft.spage=563&rft.epage=580&rft_id=info:doi/10.1038%2Fs41576-022-00468-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon