A Lagrangian heuristic for satellite range scheduling with resource constraints
The data exchange between ground stations and satellite constellations is becoming a challenging task, as more and more communication requests must be daily scheduled on a few, expensive stations located all around the Earth. Most of the scheduling procedures adopted in practice cannot cope with suc...
Gespeichert in:
| Veröffentlicht in: | Computers & operations research Jg. 38; H. 11; S. 1572 - 1583 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.11.2011
Elsevier Pergamon Press Inc |
| Schlagworte: | |
| ISSN: | 0305-0548, 1873-765X, 0305-0548 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The data exchange between ground stations and satellite constellations is becoming a challenging task, as more and more communication requests must be daily scheduled on a few, expensive stations located all around the Earth. Most of the scheduling procedures adopted in practice cannot cope with such complexity, and the development of optimization-based tools is strongly spurred.
We show that the problem can be formulated as a multiprocessor task scheduling problem in which each job (communication) requires a time dependent pair of resources (ground station and satellite) to be processed, and the objective consists of maximizing the total revenue of on-time jobs. A time-indexed {0,1}-linear programming formulation is then introduced able to include all the complex technological constraints of current constellations. Unfortunately, relevant real-world scenarios yield integer programs with hundreds of thousands variables and a few million constraints, which cannot be tackled by standard integer programming (either exact or heuristic) techniques.
To overcome this difficulty, we developed a Lagrangian version of the Fix-and-Relax MIP heuristic. It is based on a Lagrangian relaxation of the problem which is shown to be equivalent to a sequence of maximum weighted independent set problems on interval graphs. The heuristic has been implemented in a tool used by the Italian reference operator for the GALILEO constellation, providing near optimal solutions to relevant large scale test problems. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0305-0548 1873-765X 0305-0548 |
| DOI: | 10.1016/j.cor.2011.01.016 |