Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design, and Coding

In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 23; číslo 3; s. 323
Hlavní autoři: Chen, Qi, Cheng, Minquan, Bai, Baoming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI 09.03.2021
MDPI AG
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some v.
AbstractList In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some v.
In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid and positive integer which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid with degree and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some .
In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log 10·U2,5 and log v·U3,5 for some v.
In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some v.In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some v.
Author Cheng, Minquan
Chen, Qi
Bai, Baoming
AuthorAffiliation 1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’ an 710071, China
2 Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’ an 710071, China
– name: 2 Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0002-5322-4783
  surname: Chen
  fullname: Chen, Qi
– sequence: 2
  givenname: Minquan
  orcidid: 0000-0003-0360-0610
  surname: Cheng
  fullname: Cheng, Minquan
– sequence: 3
  givenname: Baoming
  surname: Bai
  fullname: Bai, Baoming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33803220$$D View this record in MEDLINE/PubMed
BookMark eNplkl1rVDEQhoNUbLt64R-Qc6nQtfk4H4kXQllbXaiIUG8Nc5LJNuVssk3OEfrvzXa3pdXkIi-Td54hkzkmByEGJOQtox-FUPQUuaBlc_GCHDGq1LwWlB480YfkOOcbSrngrH1FDoWQxc7pEfn9HcYUvYWhOg9Fbe6qiymY0ceQP1Vn1c8J0ohjFV11dY0xecxbvQwupjVsbSfVHnFSfcHsVyUAwVaLaH1YvSYvHQwZ3-zPGfl1cX61-Da__PF1uTi7nJu6ZuMcGOM9MDQGpGo5Y7ahFJUBMA5qW4uaMeGcZVSovrNSuqaxiB2VNQgmnZiR5Y5rI9zoTfJrSHc6gtf3gZhWurzDmwE1UuWANa1oeFvLpu6Z5ZTztoVOoXB9YX3esTZTv0ZrsPQFhmfQ5zfBX-tV_KM7VVYBz8j7PSDF2wnzqNc-GxwGCBinrHlDZSNZp2ixvnta67HIwwcVw-nOYFLMOaHTxo_3fS-l_aAZ1dsR0I8jUDI-_JPxAP3f-xfaRq9e
CitedBy_id crossref_primary_10_3390_e26080711
crossref_primary_10_1109_TIT_2024_3355942
crossref_primary_10_3390_e24050597
Cites_doi 10.1007/BF00196772
10.1007/s10623-003-4192-1
10.1109/18.681320
10.1109/TIT.2016.2600580
10.1201/9781420010541
10.1016/S0019-9958(78)91063-X
10.3390/e13020379
10.1016/j.jcta.2009.06.002
10.1109/TIT.2007.896862
10.1007/3-540-44750-4_29
10.1109/18.641561
10.1007/978-1-4612-1478-6
10.1090/S0025-5718-1973-0419270-0
10.1007/s001459900036
10.1109/ITW.2016.7606794
10.1016/S0012-365X(99)00004-7
10.1023/A:1024741108241
10.1023/A:1008244215660
10.1090/S0002-9947-1978-0491269-9
10.1016/j.jcta.2010.03.013
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/e23030323
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_e09fa15635264854b1d202266a79e3fb
PMC7999956
33803220
10_3390_e23030323
Genre Journal Article
GrantInformation_xml – fundername: the Fundamental Research Funds for the Central Universities
  grantid: 0
– fundername: the Guangxi Talent Highland Project of Big Data Intelligence and Application
  grantid: 0
– fundername: the Guangxi Bagui Scholar Teams for Innovation and Research Project
  grantid: 0
– fundername: National Natural Science Foundation of China
  grantid: 61971321
– fundername: Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing
  grantid: 0
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7X8
5PM
ID FETCH-LOGICAL-c441t-a112ba1ecca896211d500e9caacfa4d434113ffd1039b7d88f55dee7084a318f3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633587700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:38:08 EDT 2025
Tue Nov 04 01:58:01 EST 2025
Sun Nov 09 09:33:18 EST 2025
Thu Jan 02 22:56:48 EST 2025
Sat Nov 29 07:09:34 EST 2025
Tue Nov 18 21:49:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords orthogonal array
entropy function
variable strength orthogonal array
polymatroid
MDS code
matroidal entropy function
almost affine code
matroid
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-a112ba1ecca896211d500e9caacfa4d434113ffd1039b7d88f55dee7084a318f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5322-4783
0000-0003-0360-0610
OpenAccessLink https://doaj.org/article/e09fa15635264854b1d202266a79e3fb
PMID 33803220
PQID 2508581790
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e09fa15635264854b1d202266a79e3fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7999956
proquest_miscellaneous_2508581790
pubmed_primary_33803220
crossref_citationtrail_10_3390_e23030323
crossref_primary_10_3390_e23030323
PublicationCentury 2000
PublicationDate 20210309
PublicationDateYYYYMMDD 2021-03-09
PublicationDate_xml – month: 3
  year: 2021
  text: 20210309
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Yeung (ref_4) 2012; 62
Ji (ref_15) 2010; 117
Zhang (ref_6) 1998; 44
ref_14
ref_13
Brickell (ref_19) 1991; 4
Ng (ref_22) 2003; 30
Zhang (ref_1) 1997; 43
ref_11
ref_10
Yin (ref_16) 2011; 118
Chen (ref_25) 2016; 62
Fujishige (ref_2) 1978; 39
Blackburn (ref_17) 1973; 27
(ref_23) 2005; 34
(ref_8) 1999; 203
ref_24
ref_21
(ref_7) 1994; 22
ref_3
Nguyen (ref_12) 1978; 238
Chan (ref_5) 2011; 13
Simonis (ref_9) 1998; 14
Dougherty (ref_18) 2007; 53
Golic (ref_20) 1998; 11
References_xml – volume: 4
  start-page: 123
  year: 1991
  ident: ref_19
  article-title: On the classification of ideal secret sharing schemes
  publication-title: J. Cryptol.
  doi: 10.1007/BF00196772
– volume: 34
  start-page: 17
  year: 2005
  ident: ref_23
  article-title: Secret sharing schemes with three or four minimal qualified subsets
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-003-4192-1
– ident: ref_3
– volume: 44
  start-page: 1440
  year: 1998
  ident: ref_6
  article-title: On characterization of entropy function via information inequalities
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.681320
– volume: 22
  start-page: 185
  year: 1994
  ident: ref_7
  article-title: Probabilistic conditional independence structures and matroid theory: Background
  publication-title: Int. J. Gen. Syst.
– volume: 62
  start-page: 5385
  year: 2016
  ident: ref_25
  article-title: Partition-Symmetrical Entropy Functions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2600580
– ident: ref_11
– ident: ref_14
  doi: 10.1201/9781420010541
– volume: 39
  start-page: 55
  year: 1978
  ident: ref_2
  article-title: Polymatroidal dependence structure of a set of random variables
  publication-title: Inf. Contr.
  doi: 10.1016/S0019-9958(78)91063-X
– volume: 13
  start-page: 379
  year: 2011
  ident: ref_5
  article-title: Recent progresses in characterizing information inequalities
  publication-title: Entropy
  doi: 10.3390/e13020379
– volume: 117
  start-page: 236
  year: 2010
  ident: ref_15
  article-title: Constructions of new orthogonal arrays and covering arrays of strength three
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2009.06.002
– volume: 53
  start-page: 1949
  year: 2007
  ident: ref_18
  article-title: Networks, Matroids, and non-Shannon Information Inequalities
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.896862
– ident: ref_21
  doi: 10.1007/3-540-44750-4_29
– volume: 43
  start-page: 1982
  year: 1997
  ident: ref_1
  article-title: A non-Shannon type conditional inequality of information quantities
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.641561
– volume: 62
  start-page: 6
  year: 2012
  ident: ref_4
  article-title: Facets of entropy
  publication-title: IEEE Inf. Theory Soc.
– ident: ref_10
– ident: ref_13
  doi: 10.1007/978-1-4612-1478-6
– volume: 27
  start-page: 155
  year: 1973
  ident: ref_17
  article-title: A catalogue of combinatorial geometries
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1973-0419270-0
– volume: 11
  start-page: 75
  year: 1998
  ident: ref_20
  article-title: On matroid characterization of ideal secret sharing schemes
  publication-title: J. Cryptol.
  doi: 10.1007/s001459900036
– ident: ref_24
  doi: 10.1109/ITW.2016.7606794
– volume: 203
  start-page: 169
  year: 1999
  ident: ref_8
  article-title: Matroid representations by partitions
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(99)00004-7
– volume: 30
  start-page: 5
  year: 2003
  ident: ref_22
  article-title: A representation of a family of secret sharing matroids
  publication-title: Des. Codes Cryptogr.
  doi: 10.1023/A:1024741108241
– volume: 14
  start-page: 179
  year: 1998
  ident: ref_9
  article-title: Almost affine codes
  publication-title: Desings Codes Cryptogr.
  doi: 10.1023/A:1008244215660
– volume: 238
  start-page: 355
  year: 1978
  ident: ref_12
  article-title: Semimodular functions and combinatorial geometries
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1978-0491269-9
– volume: 118
  start-page: 270
  year: 2011
  ident: ref_16
  article-title: On the existence of orthogonal arrays OA(3,5,4n + 2)
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2010.03.013
SSID ssj0023216
Score 2.2955928
Snippet In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 323
SubjectTerms almost affine code
entropy function
matroid
matroidal entropy function
orthogonal array
variable strength orthogonal array
Title Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design, and Coding
URI https://www.ncbi.nlm.nih.gov/pubmed/33803220
https://www.proquest.com/docview/2508581790
https://pubmed.ncbi.nlm.nih.gov/PMC7999956
https://doaj.org/article/e09fa15635264854b1d202266a79e3fb
Volume 23
WOSCitedRecordID wos000633587700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-NAEB88vYd7EcVT62lZ5R58aDDJJt2Nb3606IOl-AH1xbDZneUKRypaD-7l_nZnkrTYQ_BFEkLILMkys8nMLzv7G4CfIXZDbzUGymoTJIhZQH5cBr4ovFMpdq3xVbEJNRjo0Sgbvin1xTlhNT1wrbgjDDNvCGQwj3ui06SIHOF1citGZSh9wV_fUGUzMNVALRlH3ZpHSBKoP0IKtGmL5YL3qUj634ss_0-QfONx-muw2oSK4qTu4josYbkBD1f883rsSNDjJPPHv6JPrqkaPcfiRNRJmlMx8aJadk9AmM-bVUfcrCOaW3TEeZW-0RGmdOJswl7sO9z1e7dnF0FTIyGwFMhMA0PxUmEiNoTOuoTmXBqGmFljrDeJS8hJRdJ7xzO-hXJa-zR1iCrUiaHX2ctNWC4nJW6DCD1FM2ikxsgmKvYEpVTkZVrQjol2LTic6S63DYE417H4nROQYDXnczW34GDe9LFmzXiv0SkbYN6Aia6rC2T-vDF__pH5W7A_M19OLwbPdpgSJy_POcV2OtVMQNaCrdqc80cRLqcexCRRC4Ze6MuipBz_qsi3FUXUhCl3PqPzP-BbzCkynNKW7cLy9OkF9-Cr_TMdPz-14Ysa6TasnPYGw-t2Nb7bnJp6w8d_PZIML6-G96_g4QHm
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matroidal+Entropy+Functions%3A+A+Quartet+of+Theories+of+Information%2C+Matroid%2C+Design%2C+and+Coding&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Qi+Chen&rft.au=Minquan+Cheng&rft.au=Baoming+Bai&rft.date=2021-03-09&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=23&rft.issue=3&rft.spage=323&rft_id=info:doi/10.3390%2Fe23030323&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e09fa15635264854b1d202266a79e3fb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon