Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design, and Coding

In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Jg. 23; H. 3; S. 323
Hauptverfasser: Chen, Qi, Cheng, Minquan, Bai, Baoming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 09.03.2021
MDPI AG
Schlagworte:
ISSN:1099-4300, 1099-4300
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some v.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e23030323