Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design, and Coding
In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classi...
Saved in:
| Published in: | Entropy (Basel, Switzerland) Vol. 23; no. 3; p. 323 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
09.03.2021
MDPI AG |
| Subjects: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we study the entropy functions on extreme rays of the polymatroidal region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are equivalent to the partition-representations of the matroid M with degree v and the (M,v) almost affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial design, and coding theory is developed, which may lead to potential applications in information problems such as network coding and secret-sharing. Leveraging the construction of variable strength orthogonal arrays, we characterize all matroidal entropy functions of order n≤5 with the exception of log10·U2,5 and logv·U3,5 for some v. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1099-4300 1099-4300 |
| DOI: | 10.3390/e23030323 |