Photon-Counting Underwater Optical Wireless Communication for Reliable Video Transmission Using Joint Source-Channel Coding Based on Distributed Compressive Sensing

To achieve long-distance underwater optical wireless communication, a single photon detector with single photon limit sensitivity is used to detect the optical signal at the receiver. The communication signal is extracted from the discrete single photon pulses output from the detector. Due to fluctu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 19; číslo 5; s. 1042
Hlavní autori: Hong, Zhu, Yan, Qiurong, Li, Zihang, Zhan, Ting, Wang, Yuhao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI 01.03.2019
MDPI AG
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To achieve long-distance underwater optical wireless communication, a single photon detector with single photon limit sensitivity is used to detect the optical signal at the receiver. The communication signal is extracted from the discrete single photon pulses output from the detector. Due to fluctuation of photon flux and quantum efficiency of photon detection, long-distance underwater optical wireless communication has the characteristics that the link is easily interrupted, the bit error rate is high, and the burst error is large. To achieve reliable video transmission, a joint source-channel coding scheme based on residual distributed compressive video sensing is proposed for the underwater photon counting communication system. Signal extraction from single photon pulses, data frame and data verification are specifically designed. This scheme greatly reduces the amount of data at the transmitter, transfers the computational complexity to the decoder in receiver, and enhances anti-channel error ability. The experimental results show that, when the baud rate was 100 kbps and the average number of photon pulses per bit was 20, the bit error rate (BER) was 0.0421 and video frame could still be restored clearly.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s19051042