A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let α > 0 and let A be an α -inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H . Let F be a maximal monotone operator on H such that the domain of F is included in C . Let 0...
Uložené v:
| Vydané v: | Positivity Ročník 16; číslo 3; s. 429 - 453 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
Springer Science and Business Media LLC
01.09.2012
SP Birkhäuser Verlag Basel Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 1385-1292, 1572-9281 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let
H
be a real Hilbert space and let
C
be a nonempty closed convex subset of
H
. Let
α
> 0 and let
A
be an
α
-inverse-strongly monotone mapping of
C
into
H
and let
B
be a maximal monotone operator on
H
. Let
F
be a maximal monotone operator on
H
such that the domain of
F
is included in
C
. Let 0 <
k
< 1 and let
g
be a
k
-contraction of
H
into itself. Let
V
be a
-strongly monotone and
L
-Lipschitzian continuous operator with
and
L
> 0. Take
as follows:
In this paper, under the assumption
, we prove a strong convergence theorem for finding a point
which is a unique solution of the hierarchical variational inequality
Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1385-1292 1572-9281 |
| DOI: | 10.1007/s11117-012-0161-0 |