A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let α > 0 and let A be an α -inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H . Let F be a maximal monotone operator on H such that the domain of F is included in C . Let 0...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Positivity Ročník 16; číslo 3; s. 429 - 453
Hlavní autori: Lin, Lai-Jiu, Takahashi, Wataru
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel Springer Science and Business Media LLC 01.09.2012
SP Birkhäuser Verlag Basel
Springer
Springer Nature B.V
Predmet:
ISSN:1385-1292, 1572-9281
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let α > 0 and let A be an α -inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H . Let F be a maximal monotone operator on H such that the domain of F is included in C . Let 0 < k  < 1 and let g be a k -contraction of H into itself. Let V be a -strongly monotone and L -Lipschitzian continuous operator with and L > 0. Take as follows: In this paper, under the assumption , we prove a strong convergence theorem for finding a point which is a unique solution of the hierarchical variational inequality Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-012-0161-0