Absolute work function measurement by using photoelectron spectroscopy

Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current applied physics Ročník 31; s. 52 - 59
Hlavní autoři: Kim, Jeong Won, Kim, Ansoon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2021
한국물리학회
Témata:
ISSN:1567-1739, 1878-1675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces and emission characteristics of conventional charged particle emitters. Photoelectron spectroscopy (PES) has been mainly used to determine surface electronic structure and chemical composition. Despite the common use of this technique to measure WF, there has been a lack of discussion on how to use the PES and what to be considered to determine the absolute WF. The main contribution of this review lies in the discussion of the causes of errors when measuring WF, and provides a guide for reliable WF measurement. Along with the limitations of current measurement technology, we propose future directions for absolute WF measurement. [Display omitted] •Definition of work function and applications in materials and devices.•Principles of absolute work function measurement by photoelectron spectroscopy.•Many factors to consider in measuring work function by PES.•Future expansion of the WF measurement technology.
AbstractList Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces and emission characteristics of conventional charged particle emitters. Photoelectron spectroscopy (PES) has been mainly used to determine surface electronic structure and chemical composition. Despite the common use of this technique to measure WF, there has been a lack of discussion on how to use the PES and what to be considered to determine the absolute WF. The main contribution of this review lies in the discussion of the causes of errors when measuring WF, and provides a guide for reliable WF measurement. Along with the limitations of current measurement technology, we propose future directions for absolute WF measurement. KCI Citation Count: 0
Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces and emission characteristics of conventional charged particle emitters. Photoelectron spectroscopy (PES) has been mainly used to determine surface electronic structure and chemical composition. Despite the common use of this technique to measure WF, there has been a lack of discussion on how to use the PES and what to be considered to determine the absolute WF. The main contribution of this review lies in the discussion of the causes of errors when measuring WF, and provides a guide for reliable WF measurement. Along with the limitations of current measurement technology, we propose future directions for absolute WF measurement. [Display omitted] •Definition of work function and applications in materials and devices.•Principles of absolute work function measurement by photoelectron spectroscopy.•Many factors to consider in measuring work function by PES.•Future expansion of the WF measurement technology.
Author Kim, Ansoon
Kim, Jeong Won
Author_xml – sequence: 1
  givenname: Jeong Won
  orcidid: 0000-0002-5881-9911
  surname: Kim
  fullname: Kim, Jeong Won
  email: jeongwonk@kriss.re.kr
  organization: Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon, 34113, South Korea
– sequence: 2
  givenname: Ansoon
  surname: Kim
  fullname: Kim, Ansoon
  email: askim@kriss.re.kr
  organization: Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon, 34113, South Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002777603$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kLFOwzAQhi1UJNrCA7BlZUiwUye2xVRVFJAqIaEyW87FKW7TOLIdUN8et2Vi6HT_8H-nu2-CRp3tNEL3BGcEk_Jxm4HqsxznJMMsw4RfoTHhjKekZMUo5qJkKWEzcYMm3m9xZCimY7ScV962Q9DJj3W7pBk6CMZ2yV4rPzi9111IqkMyeNNtkv7LBqtbDcHFiu9PwYPtD7foulGt13d_c4o-l8_rxWu6en95W8xXKVCKQwqNUAC6qhSnoFQpqKhphQtactwoXqim0ETUrFIFEAEcclLxPN4udC5KWs-m6OG8t3ON3IGRVpnT3Fi5c3L-sX6TgnNO8zx2ybkL8UjvdCN7Z_bKHSTB8ihNbmWUJo_SJGYySosM-8eACepoJDhl2ovk05nU8f1vo530YHQHujYuepK1NRfoXwUZio0
CitedBy_id crossref_primary_10_3390_magnetochemistry8120178
crossref_primary_10_1021_acsenergylett_5c01690
crossref_primary_10_1002_aenm_202402433
crossref_primary_10_1016_j_carbon_2022_11_047
crossref_primary_10_1016_j_solmat_2024_112924
crossref_primary_10_1088_1361_6463_ac9b69
crossref_primary_10_3390_ijms24043088
crossref_primary_10_1016_j_flatc_2024_100659
crossref_primary_10_1116_6_0002852
crossref_primary_10_3740_MRSK_2025_35_2_90
crossref_primary_10_3390_mi15010103
crossref_primary_10_1007_s12274_022_5193_6
crossref_primary_10_1002_batt_202400693
crossref_primary_10_1039_D2NR06440E
crossref_primary_10_1007_s10854_023_10370_5
crossref_primary_10_1002_cphc_202300838
crossref_primary_10_1016_j_vacuum_2023_112169
crossref_primary_10_1016_j_surfcoat_2022_128870
crossref_primary_10_1021_acsaem_5c01292
crossref_primary_10_1039_D4SC04611K
crossref_primary_10_1016_j_mtcomm_2022_105270
crossref_primary_10_1016_j_apsusc_2022_155005
crossref_primary_10_1016_j_ijhydene_2025_150232
crossref_primary_10_1039_D3NR03172A
crossref_primary_10_1016_j_physleta_2022_128241
crossref_primary_10_1016_j_apsusc_2024_159605
crossref_primary_10_1016_j_progsolidstchem_2024_100478
crossref_primary_10_1016_j_cej_2023_146413
crossref_primary_10_3390_chemosensors10040132
crossref_primary_10_1039_D2CP02736D
crossref_primary_10_1088_1742_6596_2411_1_012017
crossref_primary_10_1039_D2CY01774A
crossref_primary_10_1016_j_mssp_2024_109229
crossref_primary_10_1016_j_apsusc_2024_161960
crossref_primary_10_1103_PhysRevApplied_19_037001
crossref_primary_10_1021_acs_energyfuels_5c03073
crossref_primary_10_1016_j_jallcom_2025_182292
crossref_primary_10_1021_acs_jpclett_4c03404
crossref_primary_10_1016_j_physb_2024_416369
crossref_primary_10_1002_adma_202401568
crossref_primary_10_1016_j_jallcom_2024_173429
crossref_primary_10_1021_acs_jpcc_5c02684
crossref_primary_10_1002_smll_202505782
crossref_primary_10_1007_s00894_024_06133_6
crossref_primary_10_1063_5_0071522
crossref_primary_10_1016_j_ceramint_2024_11_066
crossref_primary_10_1007_s11468_024_02484_1
crossref_primary_10_1088_2051_672X_ac84f4
crossref_primary_10_1002_smll_202311362
crossref_primary_10_1007_s10854_023_10438_2
crossref_primary_10_1016_j_surfin_2024_104766
crossref_primary_10_1039_D5LF00206K
crossref_primary_10_1063_5_0165802
crossref_primary_10_1016_j_apsusc_2024_159796
crossref_primary_10_1016_j_jallcom_2025_180646
crossref_primary_10_1021_acsaelm_5c00594
crossref_primary_10_1063_5_0228521
crossref_primary_10_1016_j_apsusc_2025_164629
crossref_primary_10_1007_s10854_023_10072_y
crossref_primary_10_1088_1361_648X_adb408
crossref_primary_10_1002_lpor_202301069
crossref_primary_10_1039_D3EY00222E
crossref_primary_10_1016_j_snb_2024_136183
crossref_primary_10_1021_acsaem_4c03060
crossref_primary_10_1103_PhysRevApplied_22_034028
Cites_doi 10.1016/j.apsusc.2009.11.002
10.1039/D0CP05977C
10.1103/PhysRevLett.110.156804
10.1016/j.apsusc.2018.04.226
10.1063/1.2888957
10.1103/PhysRevB.46.4816
10.1103/PhysRevB.42.8864
10.1021/acs.jpclett.5b01197
10.1109/55.974809
10.1080/00268970412331333609
10.1116/1.569792
10.1063/1.323539
10.1016/0022-0728(86)87026-7
10.1039/C5MH00160A
10.1021/acs.jpcc.7b10696
10.1063/1.2717165
10.1016/S0039-6028(01)01036-6
10.1016/j.apsusc.2009.05.116
10.1088/0034-4885/69/1/R04
10.1021/acs.jpcc.9b09461
10.1016/0039-6028(73)90117-9
10.1098/rspa.1928.0091
10.1016/0009-2614(73)89582-X
10.1016/0039-6028(77)90257-6
10.1002/aenm.202000520
10.1016/S0169-4332(96)00692-7
10.1063/1.1849135
10.3762/bjnano.10.155
10.1016/S0379-6779(99)00354-9
10.1016/0039-6028(85)90791-5
10.1002/pssc.201400086
10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
10.1016/j.susc.2015.10.062
10.1002/adma.200802893
10.1116/1.2209651
10.1103/PhysRevB.81.224201
10.1016/j.nimb.2013.04.041
10.1021/nl403524a
10.1016/j.apsusc.2018.06.242
10.1016/j.mser.2010.01.001
10.1007/BF02903611
10.1016/j.progsurf.2007.11.001
10.1116/6.0000057
10.1002/adma.201401775
10.1002/polb.10642
10.1002/adma.200390065
10.1016/j.susc.2016.04.007
10.1021/acs.jpcc.7b03595
10.1116/1.4736865
10.1103/PhysRevB.80.235407
10.1002/ange.201310635
10.1021/jp806657k
10.1016/j.pmatsci.2019.100591
10.1103/PhysRevB.46.7157
10.1016/0039-6028(81)90432-5
10.1016/S0368-2048(01)00310-3
10.1116/1.591258
10.1016/0009-2614(84)87025-6
10.1016/S0022-0728(83)80445-8
10.1002/pssb.201800299
10.1063/1.2998599
10.1063/1.116313
10.1016/j.nanoen.2018.08.040
10.1063/1.105227
10.1016/0039-6028(95)01344-X
10.1103/PhysRevB.1.4555
10.1103/RevModPhys.21.185
10.1021/acs.jpclett.8b01242
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2021.07.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 59
ExternalDocumentID oai_kci_go_kr_ARTI_9888422
10_1016_j_cap_2021_07_018
S1567173921001796
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ABPIF
ABPTK
ABYKQ
ACYCR
AJBFU
ID FETCH-LOGICAL-c440t-cf9accebba84caa6949d4b054680fa85af5e19d7ba5c19c8c21b821569e2964d3
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724663900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1567-1739
IngestDate Fri Nov 17 19:18:06 EST 2023
Sat Nov 29 07:04:18 EST 2025
Tue Nov 18 21:33:56 EST 2025
Tue Jul 16 04:30:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Photoelectron spectroscopy
Work function
Surface electric dipole
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-cf9accebba84caa6949d4b054680fa85af5e19d7ba5c19c8c21b821569e2964d3
Notes https://www.sciencedirect.com/science/article/pii/S1567173921001796?via%3Dihub
ORCID 0000-0002-5881-9911
OpenAccessLink https://dx.doi.org/10.1016/j.cap.2021.07.018
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9888422
crossref_primary_10_1016_j_cap_2021_07_018
crossref_citationtrail_10_1016_j_cap_2021_07_018
elsevier_sciencedirect_doi_10_1016_j_cap_2021_07_018
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
2021-11
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Current applied physics
PublicationYear 2021
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Kahn (bib62) 2016; 3
Benneckendorf, Hillebrandt, Ullrich, Rohnacher, Hietzschold, Jänsch, Freudenberg, Beck, Mankel, Jaegermann, Pucci, Bunz, Müllen (bib79) 2018; 9
Baikie, Grain, Sutherland, Law (bib41) 2015; 12
Rath, Kolb (bib27) 1981; 109
Krahl-Urban, Niekisch, Wagner (bib65) 1977; 64
Lin, Qiang, Ranade, Tsu-Jae, Chenming (bib22) 2002; 23
Mönch (bib14) 1984
Singh, Kant (bib80) 2013; 469
Kaur, Kant (bib82) 2018; 122
Wandelt (bib66) 1997; 111
Klyushnikov (bib34) 1998; 39
Rothschild, Eizenberg (bib10) 2010; 81
Fowler, Nordheim (bib39) 1928; 119
Kirchhoff (bib56) 2012; 30
Singh-Miller, Marzari (bib8) 2009; 80
Erben, Hempel, Triyoso (bib21) 2018
Kant, Kaur, Mishra (bib26) 2020; 124
Braun, Salaneck, Fahlman (bib54) 2009; 21
Ishii, Sugiyama, Ito, Seki (bib2) 1999; 11
Greczynski, Hultman (bib72) 2018; 451
Liscio, Palermo, Müllen, Samorì (bib43) 2008; 112
Nagatomi, Kuwayama, Takai, Yoshino, Morita, Kitagawa, Nishitani (bib47) 2008; 92
Rabalais (bib52) 1977
Bocquet, Rappe, Dai (bib11) 2005; 103
Park, Choong, Gao, Hsieh, Tang (bib19) 1996; 68
Ji, Zhu, Wang (bib9) 2016; 651
Kötz, Neff, Müller, Ups (bib28) 1986; 215
Skriver, Rosengaard (bib6) 1992; 46
Etxebarria, Koch, Bondarchuk, Passerini, Teobaldi, Muñoz‐Márquez (bib31) 2020; 10
Lim, Kim, Jeong, Kim, Kim, Lee (bib83) 2014; 26
Lide (bib49) 2005
Methfessel, Hennig, Scheffler (bib7) 1992; 46
Hansen, Hansen (bib76) 2001; 481
Neff, Kötz (bib29) 1983; 151
Li, Li (bib63) 2005; 122
Kim, Lägel, Moons, Johansson, Baikie, Salaneck, Friend, Cacialli (bib35) 2000; 111
Kaur, Kant (bib13) 2017; 121
Gellman, Baker, Holsclaw (bib67) 2016; 646
Nosaka, Norimatsu, Miyama (bib25) 1984; 106
Wight, Powell (bib57) 2006; 24
Richardson (bib37) 1921
Kaur, Kant (bib81) 2015; 6
Nonnenmacher, O'Boyle, Wickramasinghe (bib42) 1991; 58
Nakanishi, Nagatomi, Takai (bib46) 2009; 256
Yang, Kim, Park, Kwon, Lanh, Hong, Kim, Kim (bib44) 2018; 457
Wu, Zhang, Wang, Yi, Deng, Xu, Chen (bib71) 2013; 304
Sharma, Kippelen, Hotchkiss, Marder (bib78) 2008; 93
Michaelson (bib48) 1977; 48
Hüfner (bib50) 2003
Surface chemical analysis — X-ray photoelectron spectroscopy — Reporting of methods used for charge control and charge correction, ISO 19318:2004.
Cahen, Kahn (bib3) 2003; 15
Yamamoto (bib33) 2005; 69
Garrillo, Grévin, Chevalier, Borowik (bib77) 2018; 89
Lang, Kohn (bib5) 1970; 1
Strayer, Mackie, Swanson (bib36) 1973; 34
Helander, Greiner, Wang, Lu (bib53) 2010; 256
Herring, Nichols (bib38) 1949; 21
Evans (bib70) 1973; 23
Schultz, Amsalem, Kotadiya, Lenz, Blom, Koch (bib64) 2018; 256
Hölzl, Schulte (bib4) 1979
Kawano (bib16) 2008; 83
Greczynski, Hultman (bib73) 2020; 107
Yoshitake (bib1) 2021
White, Liu, Hinsch, Wang (bib12) 2021; 23
Kim, Seo, Kim (bib59) 1996; 351
Yamamoto (bib15) 2006; 69
Wrana, Cieślik, Belza, Rodenbücher, Szot, Krok (bib75) 2019; 10
Peng, Wei, Li, Liu, Cao, Wang, Yu, Peng, Zhang, Zhang (bib23) 2018; 53
Axnanda, Scheele, Crumlin, Mao, Chang, Rani, Faiz, Wang, Alivisatos, Liu (bib74) 2013; 13
Park, Kim, Yi, Oh, Kim (bib45) 2010; 97
Patthey, Imer, Schneider, Beck, Baer (bib51) 1990; 42
Schlaf, Murata, Kafafi (bib20) 2001; 120
Kahn, Koch, Gao (bib58) 2003; 41
Roman, Groß (bib60) 2013; 110
Baer, Artyushkova, Cohen, Easton, Engelhard, Gengenbach, Greczynski, Mack, Morgan, Roberts (bib69) 2020; 38
Vázquez, Dappe, Ortega, Flores (bib61) 2007; 126
Kötz, Neff (bib30) 1985; 160
Gao (bib55) 2010; 68
Cardona, Ley (bib32) 1978
Brillson (bib17) 1978; 15
Gröning, Küttel, Emmenegger, Gröning, Schlapbach (bib40) 2000; 18
Wang, Ge, Wang, Deng, Wang, Bai, Li, Jiang, Zhang, Luo (bib24) 2014; 126
Lüth (bib18) 2015
Gellman (10.1016/j.cap.2021.07.018_bib67) 2016; 646
Singh-Miller (10.1016/j.cap.2021.07.018_bib8) 2009; 80
Kim (10.1016/j.cap.2021.07.018_bib59) 1996; 351
Evans (10.1016/j.cap.2021.07.018_bib70) 1973; 23
Erben (10.1016/j.cap.2021.07.018_bib21) 2018
Skriver (10.1016/j.cap.2021.07.018_bib6) 1992; 46
Rothschild (10.1016/j.cap.2021.07.018_bib10) 2010; 81
Nakanishi (10.1016/j.cap.2021.07.018_bib46) 2009; 256
Rabalais (10.1016/j.cap.2021.07.018_bib52) 1977
Kirchhoff (10.1016/j.cap.2021.07.018_bib56) 2012; 30
Li (10.1016/j.cap.2021.07.018_bib63) 2005; 122
Wang (10.1016/j.cap.2021.07.018_bib24) 2014; 126
Axnanda (10.1016/j.cap.2021.07.018_bib74) 2013; 13
Cardona (10.1016/j.cap.2021.07.018_bib32) 1978
Garrillo (10.1016/j.cap.2021.07.018_bib77) 2018; 89
Kim (10.1016/j.cap.2021.07.018_bib35) 2000; 111
Kaur (10.1016/j.cap.2021.07.018_bib81) 2015; 6
Yoshitake (10.1016/j.cap.2021.07.018_bib1) 2021
Hansen (10.1016/j.cap.2021.07.018_bib76) 2001; 481
Schultz (10.1016/j.cap.2021.07.018_bib64) 2018; 256
Greczynski (10.1016/j.cap.2021.07.018_bib72) 2018; 451
Lüth (10.1016/j.cap.2021.07.018_bib18) 2015
Fowler (10.1016/j.cap.2021.07.018_bib39) 1928; 119
Yamamoto (10.1016/j.cap.2021.07.018_bib15) 2006; 69
Brillson (10.1016/j.cap.2021.07.018_bib17) 1978; 15
Gao (10.1016/j.cap.2021.07.018_bib55) 2010; 68
Peng (10.1016/j.cap.2021.07.018_bib23) 2018; 53
Gröning (10.1016/j.cap.2021.07.018_bib40) 2000; 18
Herring (10.1016/j.cap.2021.07.018_bib38) 1949; 21
Wight (10.1016/j.cap.2021.07.018_bib57) 2006; 24
Nonnenmacher (10.1016/j.cap.2021.07.018_bib42) 1991; 58
Lin (10.1016/j.cap.2021.07.018_bib22) 2002; 23
Rath (10.1016/j.cap.2021.07.018_bib27) 1981; 109
Kaur (10.1016/j.cap.2021.07.018_bib82) 2018; 122
White (10.1016/j.cap.2021.07.018_bib12) 2021; 23
Mönch (10.1016/j.cap.2021.07.018_bib14) 1984
Wrana (10.1016/j.cap.2021.07.018_bib75) 2019; 10
Lang (10.1016/j.cap.2021.07.018_bib5) 1970; 1
Kahn (10.1016/j.cap.2021.07.018_bib62) 2016; 3
Braun (10.1016/j.cap.2021.07.018_bib54) 2009; 21
Kaur (10.1016/j.cap.2021.07.018_bib13) 2017; 121
Lide (10.1016/j.cap.2021.07.018_bib49) 2005
Bocquet (10.1016/j.cap.2021.07.018_bib11) 2005; 103
Liscio (10.1016/j.cap.2021.07.018_bib43) 2008; 112
Patthey (10.1016/j.cap.2021.07.018_bib51) 1990; 42
Ishii (10.1016/j.cap.2021.07.018_bib2) 1999; 11
Sharma (10.1016/j.cap.2021.07.018_bib78) 2008; 93
Hölzl (10.1016/j.cap.2021.07.018_bib4) 1979
Vázquez (10.1016/j.cap.2021.07.018_bib61) 2007; 126
Cahen (10.1016/j.cap.2021.07.018_bib3) 2003; 15
Baikie (10.1016/j.cap.2021.07.018_bib41) 2015; 12
Park (10.1016/j.cap.2021.07.018_bib19) 1996; 68
Kahn (10.1016/j.cap.2021.07.018_bib58) 2003; 41
Ji (10.1016/j.cap.2021.07.018_bib9) 2016; 651
Neff (10.1016/j.cap.2021.07.018_bib29) 1983; 151
Wandelt (10.1016/j.cap.2021.07.018_bib66) 1997; 111
Krahl-Urban (10.1016/j.cap.2021.07.018_bib65) 1977; 64
Wu (10.1016/j.cap.2021.07.018_bib71) 2013; 304
Etxebarria (10.1016/j.cap.2021.07.018_bib31) 2020; 10
Greczynski (10.1016/j.cap.2021.07.018_bib73) 2020; 107
Hüfner (10.1016/j.cap.2021.07.018_bib50) 2003
10.1016/j.cap.2021.07.018_bib68
Yang (10.1016/j.cap.2021.07.018_bib44) 2018; 457
Richardson (10.1016/j.cap.2021.07.018_bib37) 1921
Methfessel (10.1016/j.cap.2021.07.018_bib7) 1992; 46
Strayer (10.1016/j.cap.2021.07.018_bib36) 1973; 34
Benneckendorf (10.1016/j.cap.2021.07.018_bib79) 2018; 9
Kant (10.1016/j.cap.2021.07.018_bib26) 2020; 124
Michaelson (10.1016/j.cap.2021.07.018_bib48) 1977; 48
Baer (10.1016/j.cap.2021.07.018_bib69) 2020; 38
Schlaf (10.1016/j.cap.2021.07.018_bib20) 2001; 120
Helander (10.1016/j.cap.2021.07.018_bib53) 2010; 256
Yamamoto (10.1016/j.cap.2021.07.018_bib33) 2005; 69
Kötz (10.1016/j.cap.2021.07.018_bib30) 1985; 160
Lim (10.1016/j.cap.2021.07.018_bib83) 2014; 26
Nosaka (10.1016/j.cap.2021.07.018_bib25) 1984; 106
Kötz (10.1016/j.cap.2021.07.018_bib28) 1986; 215
Kawano (10.1016/j.cap.2021.07.018_bib16) 2008; 83
Singh (10.1016/j.cap.2021.07.018_bib80) 2013; 469
Klyushnikov (10.1016/j.cap.2021.07.018_bib34) 1998; 39
Nagatomi (10.1016/j.cap.2021.07.018_bib47) 2008; 92
Park (10.1016/j.cap.2021.07.018_bib45) 2010; 97
Roman (10.1016/j.cap.2021.07.018_bib60) 2013; 110
References_xml – volume: 107
  start-page: 100591
  year: 2020
  ident: bib73
  article-title: X-ray photoelectron spectroscopy: towards reliable binding energy referencing
  publication-title: Prog. Mater. Sci.
– volume: 13
  start-page: 6176
  year: 2013
  end-page: 6182
  ident: bib74
  article-title: Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles
  publication-title: Nano Lett.
– volume: 126
  start-page: 144703
  year: 2007
  ident: bib61
  article-title: Energy level alignment at metal/organic semiconductor interfaces: “Pillow” effect, induced density of interface states, and charge neutrality level
  publication-title: J. Chem. Phys.
– volume: 256
  start-page: 1082
  year: 2009
  end-page: 1087
  ident: bib46
  article-title: Change in work function during phase transition of Sc–O/W(100) system at high temperatures
  publication-title: Appl. Surf. Sci.
– volume: 256
  start-page: 2602
  year: 2010
  end-page: 2605
  ident: bib53
  article-title: Pitfalls in measuring work function using photoelectron spectroscopy
  publication-title: Appl. Surf. Sci.
– year: 1977
  ident: bib52
  article-title: Principles of Ultraviolet Photoelectron Spectroscopy
– volume: 256
  start-page: 1800299
  year: 2018
  ident: bib64
  article-title: Importance of substrate work function homogeneity for reliable ionization energy determination by photoelectron spectroscopy
  publication-title: Phys. Status Solidi B
– volume: 160
  start-page: 517
  year: 1985
  end-page: 530
  ident: bib30
  article-title: Anodic iridium oxide films: an UPS study of emersed electrodes
  publication-title: Surf. Sci.
– volume: 83
  start-page: 1
  year: 2008
  end-page: 165
  ident: bib16
  article-title: Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces
  publication-title: Prog. Surf. Sci.
– volume: 109
  start-page: 641
  year: 1981
  end-page: 647
  ident: bib27
  article-title: Continuous work function monitoring for electrode emersion
  publication-title: Surf. Sci.
– volume: 481
  start-page: 172
  year: 2001
  end-page: 184
  ident: bib76
  article-title: Standard reference surfaces for work function measurements in air
  publication-title: Surf. Sci.
– volume: 58
  start-page: 2921
  year: 1991
  end-page: 2923
  ident: bib42
  article-title: Kelvin probe force microscopy
  publication-title: Appl. Phys. Lett.
– year: 1984
  ident: bib14
  article-title: Work Function and Band Bending at Semiconductor Surfaces
– volume: 111
  start-page: 311
  year: 2000
  end-page: 314
  ident: bib35
  article-title: Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison
  publication-title: Synth. Met.
– volume: 122
  start-page: 911
  year: 2018
  end-page: 918
  ident: bib82
  article-title: Model of local work function and PZC for molecular self assembly over nanostructured metal electrode
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 156804
  year: 2013
  ident: bib60
  article-title: Periodic density-functional calculations on work-function change induced by adsorption of halogens on Cu(111)
  publication-title: Phys. Rev. Lett.
– volume: 92
  year: 2008
  ident: bib47
  article-title: Application of ion scattering spectroscopy to measurement of surface potential of MgO thin film under ion irradiation
  publication-title: Appl. Phys. Lett.
– volume: 106
  start-page: 128
  year: 1984
  end-page: 131
  ident: bib25
  article-title: The function of metals in metal-compounded semiconductor photocatalysts
  publication-title: Chem. Phys. Lett.
– volume: 126
  start-page: 5207
  year: 2014
  end-page: 5211
  ident: bib24
  article-title: Designing p‐type semiconductor–metal hybrid structures for improved photocatalysis
  publication-title: Angew. Chem.
– volume: 351
  start-page: L239
  year: 1996
  end-page: L244
  ident: bib59
  article-title: Surface electronic properties of Na/Ge(111)-3x1
  publication-title: Surf. Sci.
– volume: 11
  start-page: 605
  year: 1999
  end-page: 625
  ident: bib2
  article-title: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces
  publication-title: Adv. Mater.
– volume: 46
  start-page: 4816
  year: 1992
  end-page: 4829
  ident: bib7
  article-title: Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 665
  year: 2000
  end-page: 678
  ident: bib40
  article-title: Field emission properties of carbon nanotubes
  publication-title: J. Vac. Sci. Technol., B
– volume: 69
  start-page: 181
  year: 2006
  end-page: 232
  ident: bib15
  article-title: Fundamental physics of vacuum electron sources
  publication-title: Rep. Prog. Phys.
– volume: 15
  start-page: 271
  year: 2003
  end-page: 277
  ident: bib3
  article-title: Electron energetics at surfaces and interfaces: concepts and experiments
  publication-title: Adv. Mater.
– volume: 46
  start-page: 7157
  year: 1992
  end-page: 7168
  ident: bib6
  article-title: Surface energy and work function of elemental metals
  publication-title: Phys. Rev. B
– volume: 124
  start-page: 2273
  year: 2020
  end-page: 2288
  ident: bib26
  article-title: Theory for influence of the metal electrolyte interface on heterogeneous electron transfer rate constant: fractional electron transferred transition state approach
  publication-title: J. Phys. Chem. C
– volume: 89
  year: 2018
  ident: bib77
  article-title: Calibrated work function mapping by Kelvin probe force microscopy
  publication-title: Rev. Sci. Instrum.
– volume: 120
  start-page: 149
  year: 2001
  end-page: 154
  ident: bib20
  article-title: Work function measurements on indium tin oxide films
  publication-title: J. Electron. Spectrosc. Relat. Phenom.
– year: 2021
  ident: bib1
  article-title: Work Function and Band Alignment of Electrode Materials
– volume: 69
  start-page: 181
  year: 2005
  ident: bib33
  article-title: Fundamental physics of vacuum electron sources
  publication-title: Rep. Prog. Phys.
– volume: 48
  start-page: 4729
  year: 1977
  end-page: 4733
  ident: bib48
  article-title: The work function of the elements and its periodicity
  publication-title: J. Appl. Phys.
– volume: 39
  start-page: 944
  year: 1998
  end-page: 947
  ident: bib34
  article-title: Method to determine the work function using X-ray photoelectron spectroscopy
  publication-title: J. Struct. Chem.
– volume: 469
  start-page: 20130163
  year: 2013
  ident: bib80
  article-title: Shape-and size-dependent electronic capacitance in nanostructured materials
  publication-title: Proc. Math. Phys. Eng. Sci.
– year: 1921
  ident: bib37
  article-title: The Emission of Electricity from Hot Bodies
– volume: 651
  start-page: 137
  year: 2016
  end-page: 146
  ident: bib9
  article-title: Detailed first-principles studies on surface energy and work function of hexagonal metals
  publication-title: Surf. Sci.
– volume: 24
  start-page: 1024
  year: 2006
  end-page: 1030
  ident: bib57
  article-title: Evaluation of the shapes of Auger-and secondary-electron line scans across interfaces with the logistic function
  publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films
– volume: 451
  start-page: 99
  year: 2018
  end-page: 103
  ident: bib72
  article-title: Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak
  publication-title: Appl. Surf. Sci.
– volume: 23
  start-page: 2649
  year: 2021
  end-page: 2657
  ident: bib12
  article-title: Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections
  publication-title: Phys. Chem. Chem. Phys.
– volume: 23
  start-page: 49
  year: 2002
  end-page: 51
  ident: bib22
  article-title: An adjustable work function technology using Mo gate for CMOS devices
  publication-title: IEEE Electron. Device Lett.
– volume: 646
  start-page: 83
  year: 2016
  end-page: 89
  ident: bib67
  article-title: Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)
  publication-title: Surf. Sci.
– volume: 10
  start-page: 2000520
  year: 2020
  ident: bib31
  article-title: Work function evolution in Li anode processing
  publication-title: Adv. Energy Mater.
– volume: 68
  start-page: 2699
  year: 1996
  end-page: 2701
  ident: bib19
  article-title: Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 134
  year: 1973
  end-page: 138
  ident: bib70
  article-title: Work function measurements by X-Pe spectroscopy, and their relevance to the calibration of X-Pe spectra
  publication-title: Chem. Phys. Lett.
– volume: 112
  start-page: 17368
  year: 2008
  end-page: 17377
  ident: bib43
  article-title: Tip−Sample interactions in Kelvin probe force microscopy: quantitative measurement of the local surface potential
  publication-title: J. Phys. Chem. C
– year: 2005
  ident: bib49
  publication-title: CRC-Handbook of Chemistry and Physics
– volume: 38
  year: 2020
  ident: bib69
  article-title: XPS guide: charge neutralization and binding energy referencing for insulating samples
  publication-title: J. Vac. Sci. Technol.
– volume: 151
  start-page: 305
  year: 1983
  end-page: 310
  ident: bib29
  article-title: Photoelectron spectroscopic study of emersed gold electrodes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 119
  start-page: 173
  year: 1928
  end-page: 181
  ident: bib39
  article-title: Electron emission in intense electric fields
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 42
  start-page: 8864
  year: 1990
  end-page: 8881
  ident: bib51
  article-title: High-resolution photoemission study of the low-energy excitations in 4f-electron systems
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 4555
  year: 1970
  end-page: 4568
  ident: bib5
  article-title: Theory of metal surfaces: charge density and surface energy
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 185
  year: 1949
  end-page: 270
  ident: bib38
  publication-title: Thermionic Emission, Rev. Mod. Phys.
– volume: 103
  start-page: 883
  year: 2005
  end-page: 890
  ident: bib11
  article-title: A density functional theory study of adsorbate-induced work function change and binding energy: olefins on Ag(111)
  publication-title: Mol. Phys.
– volume: 10
  start-page: 1596
  year: 2019
  end-page: 1607
  ident: bib75
  article-title: Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation
  publication-title: Beilstein J. Nanotechnol.
– volume: 12
  start-page: 259
  year: 2015
  end-page: 262
  ident: bib41
  article-title: Near ambient pressure photoemission spectroscopy of metal and semiconductor surfaces
  publication-title: Phys. Status Solidi C
– volume: 26
  start-page: 6461
  year: 2014
  end-page: 6466
  ident: bib83
  article-title: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function
  publication-title: Adv. Mater.
– volume: 64
  start-page: 52
  year: 1977
  end-page: 68
  ident: bib65
  article-title: Work function of stepped tungsten single crystal surfaces
  publication-title: Surf. Sci.
– volume: 15
  start-page: 1378
  year: 1978
  end-page: 1383
  ident: bib17
  article-title: Chemical reaction and charge redistribution at metal–semiconductor interfaces
  publication-title: J. Vac. Sci. Technol.
– volume: 53
  start-page: 97
  year: 2018
  end-page: 107
  ident: bib23
  article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@ Ti3C2Tx enabled by low-work-function 2D titanium carbide
  publication-title: Nanomater. Energy
– volume: 121
  start-page: 13059
  year: 2017
  end-page: 13069
  ident: bib13
  article-title: Theory of work function and potential of zero charge for metal nanostructured and rough electrodes
  publication-title: J. Phys. Chem. C
– volume: 30
  year: 2012
  ident: bib56
  article-title: Logistic function profile fit: a least-squares program for fitting interface profiles to an extended logistic function
  publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films
– volume: 41
  start-page: 2529
  year: 2003
  end-page: 2548
  ident: bib58
  article-title: Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 111
  start-page: 1
  year: 1997
  end-page: 10
  ident: bib66
  article-title: The local work function: concept and implications
  publication-title: Appl. Surf. Sci.
– volume: 304
  start-page: 49
  year: 2013
  end-page: 56
  ident: bib71
  article-title: Effects of X-ray irradiation on the structure and field electron emission properties of vertically aligned few-layer graphene
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– volume: 3
  start-page: 7
  year: 2016
  end-page: 10
  ident: bib62
  article-title: Fermi level, work function and vacuum level
  publication-title: Mater. Horiz.
– volume: 9
  start-page: 3731
  year: 2018
  end-page: 3737
  ident: bib79
  article-title: Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide
  publication-title: J. Phys. Chem. Lett.
– start-page: 1
  year: 1979
  end-page: 150
  ident: bib4
  publication-title: In Solid Surface Physics
– reference: Surface chemical analysis — X-ray photoelectron spectroscopy — Reporting of methods used for charge control and charge correction, ISO 19318:2004.
– year: 2018
  ident: bib21
  publication-title: In Complementary-Metal-Oxide-Semiconductor
– year: 1978
  ident: bib32
  article-title: Photoemission in Solids I
– year: 2003
  ident: bib50
  article-title: Photoelectron Spectroscopy
– volume: 80
  start-page: 235407
  year: 2009
  ident: bib8
  article-title: Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 39
  year: 2010
  end-page: 87
  ident: bib55
  article-title: Surface analytical studies of interfaces in organic semiconductor devices
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 6
  start-page: 2870
  year: 2015
  end-page: 2874
  ident: bib81
  article-title: Curvature-induced anomalous enhancement in the work function of nanostructures
  publication-title: J. Phys. Chem. Lett.
– volume: 215
  start-page: 331
  year: 1986
  end-page: 344
  ident: bib28
  article-title: XPS and work function study of emersed silver, platinum and gold electrodes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 34
  start-page: 225
  year: 1973
  end-page: 248
  ident: bib36
  article-title: Work function measurements by the field emission retarding potential method
  publication-title: Surf. Sci.
– volume: 21
  start-page: 1450
  year: 2009
  end-page: 1472
  ident: bib54
  article-title: Energy-level alignment at organic/metal and organic/organic interfaces
  publication-title: Adv. Mater.
– year: 2015
  ident: bib18
  article-title: Solid Surfaces, Interfaces and Thin Films
– volume: 122
  year: 2005
  ident: bib63
  article-title: On the correlation between surface roughness and work function in copper
  publication-title: J. Chem. Phys.
– volume: 93
  start-page: 163308
  year: 2008
  ident: bib78
  article-title: Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes
  publication-title: Appl. Phys. Lett.
– volume: 81
  start-page: 224201
  year: 2010
  ident: bib10
  article-title: Work function calculation of solid solution alloys using the image force model
  publication-title: Phys. Rev. B
– volume: 97
  year: 2010
  ident: bib45
  article-title: Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices
  publication-title: Appl. Phys. Lett.
– volume: 457
  start-page: 773
  year: 2018
  end-page: 779
  ident: bib44
  article-title: Thermal annealing of black phosphorus for etching and protection
  publication-title: Appl. Surf. Sci.
– year: 1977
  ident: 10.1016/j.cap.2021.07.018_bib52
– volume: 256
  start-page: 2602
  year: 2010
  ident: 10.1016/j.cap.2021.07.018_bib53
  article-title: Pitfalls in measuring work function using photoelectron spectroscopy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.11.002
– volume: 23
  start-page: 2649
  year: 2021
  ident: 10.1016/j.cap.2021.07.018_bib12
  article-title: Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05977C
– volume: 110
  start-page: 156804
  year: 2013
  ident: 10.1016/j.cap.2021.07.018_bib60
  article-title: Periodic density-functional calculations on work-function change induced by adsorption of halogens on Cu(111)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.156804
– year: 1984
  ident: 10.1016/j.cap.2021.07.018_bib14
– volume: 451
  start-page: 99
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib72
  article-title: Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.226
– volume: 92
  year: 2008
  ident: 10.1016/j.cap.2021.07.018_bib47
  article-title: Application of ion scattering spectroscopy to measurement of surface potential of MgO thin film under ion irradiation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2888957
– volume: 46
  start-page: 4816
  year: 1992
  ident: 10.1016/j.cap.2021.07.018_bib7
  article-title: Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.4816
– volume: 42
  start-page: 8864
  year: 1990
  ident: 10.1016/j.cap.2021.07.018_bib51
  article-title: High-resolution photoemission study of the low-energy excitations in 4f-electron systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.8864
– volume: 6
  start-page: 2870
  year: 2015
  ident: 10.1016/j.cap.2021.07.018_bib81
  article-title: Curvature-induced anomalous enhancement in the work function of nanostructures
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01197
– volume: 23
  start-page: 49
  year: 2002
  ident: 10.1016/j.cap.2021.07.018_bib22
  article-title: An adjustable work function technology using Mo gate for CMOS devices
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/55.974809
– volume: 103
  start-page: 883
  year: 2005
  ident: 10.1016/j.cap.2021.07.018_bib11
  article-title: A density functional theory study of adsorbate-induced work function change and binding energy: olefins on Ag(111)
  publication-title: Mol. Phys.
  doi: 10.1080/00268970412331333609
– volume: 15
  start-page: 1378
  year: 1978
  ident: 10.1016/j.cap.2021.07.018_bib17
  article-title: Chemical reaction and charge redistribution at metal–semiconductor interfaces
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.569792
– volume: 48
  start-page: 4729
  year: 1977
  ident: 10.1016/j.cap.2021.07.018_bib48
  article-title: The work function of the elements and its periodicity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323539
– volume: 215
  start-page: 331
  year: 1986
  ident: 10.1016/j.cap.2021.07.018_bib28
  article-title: XPS and work function study of emersed silver, platinum and gold electrodes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(86)87026-7
– volume: 3
  start-page: 7
  year: 2016
  ident: 10.1016/j.cap.2021.07.018_bib62
  article-title: Fermi level, work function and vacuum level
  publication-title: Mater. Horiz.
  doi: 10.1039/C5MH00160A
– volume: 122
  start-page: 911
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib82
  article-title: Model of local work function and PZC for molecular self assembly over nanostructured metal electrode
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b10696
– volume: 126
  start-page: 144703
  year: 2007
  ident: 10.1016/j.cap.2021.07.018_bib61
  article-title: Energy level alignment at metal/organic semiconductor interfaces: “Pillow” effect, induced density of interface states, and charge neutrality level
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2717165
– volume: 481
  start-page: 172
  year: 2001
  ident: 10.1016/j.cap.2021.07.018_bib76
  article-title: Standard reference surfaces for work function measurements in air
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01036-6
– volume: 97
  year: 2010
  ident: 10.1016/j.cap.2021.07.018_bib45
  article-title: Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices
  publication-title: Appl. Phys. Lett.
– volume: 256
  start-page: 1082
  year: 2009
  ident: 10.1016/j.cap.2021.07.018_bib46
  article-title: Change in work function during phase transition of Sc–O/W(100) system at high temperatures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.05.116
– volume: 69
  start-page: 181
  year: 2005
  ident: 10.1016/j.cap.2021.07.018_bib33
  article-title: Fundamental physics of vacuum electron sources
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/69/1/R04
– volume: 124
  start-page: 2273
  year: 2020
  ident: 10.1016/j.cap.2021.07.018_bib26
  article-title: Theory for influence of the metal electrolyte interface on heterogeneous electron transfer rate constant: fractional electron transferred transition state approach
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09461
– volume: 34
  start-page: 225
  year: 1973
  ident: 10.1016/j.cap.2021.07.018_bib36
  article-title: Work function measurements by the field emission retarding potential method
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(73)90117-9
– volume: 119
  start-page: 173
  year: 1928
  ident: 10.1016/j.cap.2021.07.018_bib39
  article-title: Electron emission in intense electric fields
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1928.0091
– volume: 23
  start-page: 134
  year: 1973
  ident: 10.1016/j.cap.2021.07.018_bib70
  article-title: Work function measurements by X-Pe spectroscopy, and their relevance to the calibration of X-Pe spectra
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(73)89582-X
– volume: 64
  start-page: 52
  year: 1977
  ident: 10.1016/j.cap.2021.07.018_bib65
  article-title: Work function of stepped tungsten single crystal surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(77)90257-6
– volume: 10
  start-page: 2000520
  year: 2020
  ident: 10.1016/j.cap.2021.07.018_bib31
  article-title: Work function evolution in Li anode processing
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000520
– year: 2021
  ident: 10.1016/j.cap.2021.07.018_bib1
– volume: 111
  start-page: 1
  year: 1997
  ident: 10.1016/j.cap.2021.07.018_bib66
  article-title: The local work function: concept and implications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(96)00692-7
– volume: 122
  year: 2005
  ident: 10.1016/j.cap.2021.07.018_bib63
  article-title: On the correlation between surface roughness and work function in copper
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1849135
– volume: 10
  start-page: 1596
  year: 2019
  ident: 10.1016/j.cap.2021.07.018_bib75
  article-title: Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.10.155
– volume: 111
  start-page: 311
  year: 2000
  ident: 10.1016/j.cap.2021.07.018_bib35
  article-title: Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(99)00354-9
– volume: 160
  start-page: 517
  year: 1985
  ident: 10.1016/j.cap.2021.07.018_bib30
  article-title: Anodic iridium oxide films: an UPS study of emersed electrodes
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(85)90791-5
– volume: 12
  start-page: 259
  year: 2015
  ident: 10.1016/j.cap.2021.07.018_bib41
  article-title: Near ambient pressure photoemission spectroscopy of metal and semiconductor surfaces
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.201400086
– volume: 11
  start-page: 605
  year: 1999
  ident: 10.1016/j.cap.2021.07.018_bib2
  article-title: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
– ident: 10.1016/j.cap.2021.07.018_bib68
– year: 2005
  ident: 10.1016/j.cap.2021.07.018_bib49
– volume: 646
  start-page: 83
  year: 2016
  ident: 10.1016/j.cap.2021.07.018_bib67
  article-title: Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2015.10.062
– volume: 21
  start-page: 1450
  year: 2009
  ident: 10.1016/j.cap.2021.07.018_bib54
  article-title: Energy-level alignment at organic/metal and organic/organic interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802893
– volume: 24
  start-page: 1024
  year: 2006
  ident: 10.1016/j.cap.2021.07.018_bib57
  article-title: Evaluation of the shapes of Auger-and secondary-electron line scans across interfaces with the logistic function
  publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films
  doi: 10.1116/1.2209651
– volume: 81
  start-page: 224201
  year: 2010
  ident: 10.1016/j.cap.2021.07.018_bib10
  article-title: Work function calculation of solid solution alloys using the image force model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.224201
– volume: 304
  start-page: 49
  year: 2013
  ident: 10.1016/j.cap.2021.07.018_bib71
  article-title: Effects of X-ray irradiation on the structure and field electron emission properties of vertically aligned few-layer graphene
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2013.04.041
– volume: 13
  start-page: 6176
  year: 2013
  ident: 10.1016/j.cap.2021.07.018_bib74
  article-title: Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl403524a
– volume: 457
  start-page: 773
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib44
  article-title: Thermal annealing of black phosphorus for etching and protection
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.242
– volume: 68
  start-page: 39
  year: 2010
  ident: 10.1016/j.cap.2021.07.018_bib55
  article-title: Surface analytical studies of interfaces in organic semiconductor devices
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2010.01.001
– volume: 39
  start-page: 944
  year: 1998
  ident: 10.1016/j.cap.2021.07.018_bib34
  article-title: Method to determine the work function using X-ray photoelectron spectroscopy
  publication-title: J. Struct. Chem.
  doi: 10.1007/BF02903611
– volume: 83
  start-page: 1
  year: 2008
  ident: 10.1016/j.cap.2021.07.018_bib16
  article-title: Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2007.11.001
– volume: 38
  year: 2020
  ident: 10.1016/j.cap.2021.07.018_bib69
  article-title: XPS guide: charge neutralization and binding energy referencing for insulating samples
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/6.0000057
– volume: 26
  start-page: 6461
  year: 2014
  ident: 10.1016/j.cap.2021.07.018_bib83
  article-title: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401775
– volume: 41
  start-page: 2529
  year: 2003
  ident: 10.1016/j.cap.2021.07.018_bib58
  article-title: Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.10642
– year: 2003
  ident: 10.1016/j.cap.2021.07.018_bib50
– start-page: 1
  year: 1979
  ident: 10.1016/j.cap.2021.07.018_bib4
– volume: 15
  start-page: 271
  year: 2003
  ident: 10.1016/j.cap.2021.07.018_bib3
  article-title: Electron energetics at surfaces and interfaces: concepts and experiments
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390065
– volume: 651
  start-page: 137
  year: 2016
  ident: 10.1016/j.cap.2021.07.018_bib9
  article-title: Detailed first-principles studies on surface energy and work function of hexagonal metals
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2016.04.007
– volume: 121
  start-page: 13059
  year: 2017
  ident: 10.1016/j.cap.2021.07.018_bib13
  article-title: Theory of work function and potential of zero charge for metal nanostructured and rough electrodes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03595
– volume: 69
  start-page: 181
  year: 2006
  ident: 10.1016/j.cap.2021.07.018_bib15
  article-title: Fundamental physics of vacuum electron sources
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/69/1/R04
– volume: 30
  year: 2012
  ident: 10.1016/j.cap.2021.07.018_bib56
  article-title: Logistic function profile fit: a least-squares program for fitting interface profiles to an extended logistic function
  publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films
  doi: 10.1116/1.4736865
– volume: 80
  start-page: 235407
  year: 2009
  ident: 10.1016/j.cap.2021.07.018_bib8
  article-title: Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235407
– volume: 126
  start-page: 5207
  year: 2014
  ident: 10.1016/j.cap.2021.07.018_bib24
  article-title: Designing p‐type semiconductor–metal hybrid structures for improved photocatalysis
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201310635
– volume: 112
  start-page: 17368
  year: 2008
  ident: 10.1016/j.cap.2021.07.018_bib43
  article-title: Tip−Sample interactions in Kelvin probe force microscopy: quantitative measurement of the local surface potential
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806657k
– year: 1978
  ident: 10.1016/j.cap.2021.07.018_bib32
– volume: 89
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib77
  article-title: Calibrated work function mapping by Kelvin probe force microscopy
  publication-title: Rev. Sci. Instrum.
– year: 1921
  ident: 10.1016/j.cap.2021.07.018_bib37
– volume: 107
  start-page: 100591
  year: 2020
  ident: 10.1016/j.cap.2021.07.018_bib73
  article-title: X-ray photoelectron spectroscopy: towards reliable binding energy referencing
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100591
– volume: 46
  start-page: 7157
  year: 1992
  ident: 10.1016/j.cap.2021.07.018_bib6
  article-title: Surface energy and work function of elemental metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.7157
– volume: 109
  start-page: 641
  year: 1981
  ident: 10.1016/j.cap.2021.07.018_bib27
  article-title: Continuous work function monitoring for electrode emersion
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(81)90432-5
– volume: 120
  start-page: 149
  year: 2001
  ident: 10.1016/j.cap.2021.07.018_bib20
  article-title: Work function measurements on indium tin oxide films
  publication-title: J. Electron. Spectrosc. Relat. Phenom.
  doi: 10.1016/S0368-2048(01)00310-3
– volume: 18
  start-page: 665
  year: 2000
  ident: 10.1016/j.cap.2021.07.018_bib40
  article-title: Field emission properties of carbon nanotubes
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.591258
– volume: 106
  start-page: 128
  year: 1984
  ident: 10.1016/j.cap.2021.07.018_bib25
  article-title: The function of metals in metal-compounded semiconductor photocatalysts
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(84)87025-6
– volume: 151
  start-page: 305
  year: 1983
  ident: 10.1016/j.cap.2021.07.018_bib29
  article-title: Photoelectron spectroscopic study of emersed gold electrodes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(83)80445-8
– year: 2015
  ident: 10.1016/j.cap.2021.07.018_bib18
– volume: 256
  start-page: 1800299
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib64
  article-title: Importance of substrate work function homogeneity for reliable ionization energy determination by photoelectron spectroscopy
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201800299
– volume: 93
  start-page: 163308
  year: 2008
  ident: 10.1016/j.cap.2021.07.018_bib78
  article-title: Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2998599
– volume: 68
  start-page: 2699
  year: 1996
  ident: 10.1016/j.cap.2021.07.018_bib19
  article-title: Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116313
– volume: 53
  start-page: 97
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib23
  article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@ Ti3C2Tx enabled by low-work-function 2D titanium carbide
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2018.08.040
– volume: 58
  start-page: 2921
  year: 1991
  ident: 10.1016/j.cap.2021.07.018_bib42
  article-title: Kelvin probe force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.105227
– year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib21
– volume: 351
  start-page: L239
  year: 1996
  ident: 10.1016/j.cap.2021.07.018_bib59
  article-title: Surface electronic properties of Na/Ge(111)-3x1
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(95)01344-X
– volume: 1
  start-page: 4555
  year: 1970
  ident: 10.1016/j.cap.2021.07.018_bib5
  article-title: Theory of metal surfaces: charge density and surface energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.1.4555
– volume: 469
  start-page: 20130163
  year: 2013
  ident: 10.1016/j.cap.2021.07.018_bib80
  article-title: Shape-and size-dependent electronic capacitance in nanostructured materials
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 21
  start-page: 185
  year: 1949
  ident: 10.1016/j.cap.2021.07.018_bib38
  publication-title: Thermionic Emission, Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.21.185
– volume: 9
  start-page: 3731
  year: 2018
  ident: 10.1016/j.cap.2021.07.018_bib79
  article-title: Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01242
SSID ssj0016404
Score 2.5653899
SecondaryResourceType review_article
Snippet Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Photoelectron spectroscopy
Surface electric dipole
Work function
물리학
Title Absolute work function measurement by using photoelectron spectroscopy
URI https://dx.doi.org/10.1016/j.cap.2021.07.018
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002777603
Volume 31
WOSCitedRecordID wos000724663900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2021, 31(0), , pp.52-59
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7sVsEX8Yr1RhCfLCm76WQuj4u02D6UghX3bZhbtLdk2d1K_feeM5fsrsWigi9JGCaTYb7k5Mw5M99HyLuq4bpmWpd2l7uSNt6WmhlXguvdMMEpE8MoNsGPjsRkIo-TxP08yAnwthXX13L6X6GGMgAbt87-Bdx9o1AA1wA6HAF2OP4R8GMT2vdBBWYb_1sB4stlMBBdzqsQI5h-6xZdVsLZDrsukd2ym64lezOHk04ea4yGLLNAUZD50KNs0ZfVtP5lXDI571Jhii5Uo7TNrg953dj2Eq0kQ2bJyEK042OZwOkoizIo2bQmAx9tY2SqTX_ZSAN-w37HUMIZLv7awe4EYtVkoNdpsT9hJ7APFbJIcck2yGbFaykGZHN8sDc57HNJjAYRyb7TObcdVvn98qDfeScb7axZ8TtOHpIHacJQjCPQj8gd3z4m944jBE_Ifoa7QLiLDHexAndhfhQB7mIN7mIV7qfk8_7eyYePZdLGKC2lw0VpG6mt9cZoQa3WTFLpqAH_Gz6uRotaN7UfSceNru1IWmGrkRHg3jHpMdHudp-RQdu1_jkpkFQAKjIpHTThtHDMM2gVahlntNsiwzwmyibieNQvuVB5heCZgmFUOIxqyBUM4xZ5398yjawpt1WmeaBVcvuiO6fgrbjttrcAijq3pwop0vH8tVPnMwUTwQMlhRC0ql78W9svyf3lx_CKDBazK_-a3LXfF6fz2Zv0gv0E1XCJ1Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absolute+work+function+measurement+by+using+photoelectron+spectroscopy&rft.jtitle=Current+applied+physics&rft.au=Kim%2C+Jeong+Won&rft.au=Kim%2C+Ansoon&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=31&rft.spage=52&rft.epage=59&rft_id=info:doi/10.1016%2Fj.cap.2021.07.018&rft.externalDocID=S1567173921001796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon