Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification
A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on neural networks Jg. 18; H. 2; S. 506 - 519 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.03.2007
|
| Schlagworte: | |
| ISSN: | 1045-9227 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 1045-9227 |
| DOI: | 10.1109/TNN.2006.885038 |