On the hardness of inclusion-wise minimal separators enumeration

Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingl...

Full description

Saved in:
Bibliographic Details
Published in:Information processing letters Vol. 185; p. 106469
Main Authors: Brosse, Caroline, Defrain, Oscar, Kurita, Kazuhiro, Limouzy, Vincent, Uno, Takeaki, Wasa, Kunihiro
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2024
Subjects:
ISSN:0020-0190, 1872-6119
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal a-b separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P=NP. •The problem of listing not all minimal separators but inclusion-wise minimal separators finds motivations in the quest of fast implementations for exact treedepth computation.•Deciding if a graph G has an inclusion-wise minimal separator of size at least 4 is NP-complete.•There is no output-polynomial time algorithm for enumerating inclusion-wise minimal separators unless P=NP.
AbstractList Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal a-b separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P=NP. •The problem of listing not all minimal separators but inclusion-wise minimal separators finds motivations in the quest of fast implementations for exact treedepth computation.•Deciding if a graph G has an inclusion-wise minimal separator of size at least 4 is NP-complete.•There is no output-polynomial time algorithm for enumerating inclusion-wise minimal separators unless P=NP.
ArticleNumber 106469
Author Uno, Takeaki
Wasa, Kunihiro
Limouzy, Vincent
Defrain, Oscar
Brosse, Caroline
Kurita, Kazuhiro
Author_xml – sequence: 1
  givenname: Caroline
  surname: Brosse
  fullname: Brosse, Caroline
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, LIMOS, F-63000, Clermont–Ferrand, France
– sequence: 2
  givenname: Oscar
  orcidid: 0000-0001-9203-1530
  surname: Defrain
  fullname: Defrain, Oscar
  email: oscar.defrain@lis-lab.fr
  organization: Aix-Marseille Université, Marseille, 13009, France
– sequence: 3
  givenname: Kazuhiro
  surname: Kurita
  fullname: Kurita, Kazuhiro
  organization: Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
– sequence: 4
  givenname: Vincent
  surname: Limouzy
  fullname: Limouzy, Vincent
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, LIMOS, F-63000, Clermont–Ferrand, France
– sequence: 5
  givenname: Takeaki
  surname: Uno
  fullname: Uno, Takeaki
  organization: National Institute of Informatics, Hitotsubashi, Chiyoda-ku, 101-8430, Tokyo, Japan
– sequence: 6
  givenname: Kunihiro
  surname: Wasa
  fullname: Wasa, Kunihiro
  organization: Hosei University, Kajinocho, Koganei, 184-8584, Tokyo, Japan
BookMark eNp9kM9KAzEQh4NUsK0-gLe8wK6T7G7S4EUp_oNCL3oO2eyEpmyzJdkqvr2p9eShp5mB3zfMfDMyCUNAQm4ZlAyYuNuWft-XHHiVZ1ELdUGmbCF5IRhTEzIF4FAAU3BFZiltAXKoklPysA503CDdmNgFTIkOjvpg-0PyQyi-fEK688HvTE8T7k004xATxXDYYe5z5ppcOtMnvPmrc_Lx_PS-fC1W65e35eOqsHUNY8FchaAQUCnWqRpaV9eGc8VkZ53hUlhEZUSzaHjTyk40spNoGmvAGdVCW80JO-21cUgpotP7mM-K35qBPirQW50V6KMCfVKQGfmPsX78vXqMxvdnyfsTifmlT49RJ-sxWOx8RDvqbvBn6B-bMHkx
CitedBy_id crossref_primary_10_1007_s00026_025_00781_y
crossref_primary_10_1145_3725252
Cites_doi 10.1137/050643350
10.1016/0020-0190(76)90065-X
10.1016/S0166-218X(99)00179-1
10.1137/S009753979427087X
10.1016/0020-0190(88)90065-8
10.1007/s10878-018-0353-z
10.1142/S0129054100000211
10.1002/jgt.22179
10.7155/jgaa.00064
10.1016/S0304-3975(01)00007-X
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ipl.2023.106469
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
ExternalDocumentID 10_1016_j_ipl_2023_106469
S0020019023001126
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c440t-1f3e09e0e991d940bf44a22917dcfa276cee9a658525b7d657d7ea5ca0fa9b0b3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001139580200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Sat Nov 29 07:26:49 EST 2025
Tue Nov 18 22:42:16 EST 2025
Sat Feb 17 16:12:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NP-hardness
Combinatorial problems
Output-sensitive enumeration
Inclusion-wise minimal separators
Minimal separators
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-1f3e09e0e991d940bf44a22917dcfa276cee9a658525b7d657d7ea5ca0fa9b0b3
ORCID 0000-0001-9203-1530
OpenAccessLink https://hal.science/hal-04216381
ParticipantIDs crossref_primary_10_1016_j_ipl_2023_106469
crossref_citationtrail_10_1016_j_ipl_2023_106469
elsevier_sciencedirect_doi_10_1016_j_ipl_2023_106469
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Information processing letters
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fomin, Kratsch, Todinca, Villanger (br0050) 2008; 38
Berry, Bordat, Cogis (br0030) 2000; 11
Eppstein (br0020) 2002; 7
Tamaki (br0070) 2019; 37
Johnson, Yannakakis, Papadimitriou (br0130) 1988; 27
Brokkelkamp, van Venetië, de Vries, Westerdiep, Solver (br0100) 2020; vol. 180
Golumbic (br0140) 2004
Korhonen (br0110) 2020; vol. 180
Deogun, Kloks, Kratsch, Müller (br0080) 1999; 98
Gaspers, Mackenzie (br0150) 2018; 87
Korhonen, Berg, Järvisalo (br0090) 2019
Bouchitté, Todinca (br0040) 2002; 276
br0060
Lawler (br0010) 1976; 5
Kloks, Kratsch (br0120) 1998; 27
Eppstein (10.1016/j.ipl.2023.106469_br0020) 2002; 7
Lawler (10.1016/j.ipl.2023.106469_br0010) 1976; 5
Deogun (10.1016/j.ipl.2023.106469_br0080) 1999; 98
Golumbic (10.1016/j.ipl.2023.106469_br0140) 2004
Johnson (10.1016/j.ipl.2023.106469_br0130) 1988; 27
Korhonen (10.1016/j.ipl.2023.106469_br0110) 2020; vol. 180
Kloks (10.1016/j.ipl.2023.106469_br0120) 1998; 27
Korhonen (10.1016/j.ipl.2023.106469_br0090) 2019
Fomin (10.1016/j.ipl.2023.106469_br0050) 2008; 38
Tamaki (10.1016/j.ipl.2023.106469_br0070) 2019; 37
Brokkelkamp (10.1016/j.ipl.2023.106469_br0100) 2020; vol. 180
Berry (10.1016/j.ipl.2023.106469_br0030) 2000; 11
Bouchitté (10.1016/j.ipl.2023.106469_br0040) 2002; 276
Gaspers (10.1016/j.ipl.2023.106469_br0150) 2018; 87
References_xml – volume: 5
  start-page: 66
  year: 1976
  end-page: 67
  ident: br0010
  article-title: A note on the complexity of the chromatic number problem
  publication-title: Inf. Process. Lett.
– volume: vol. 180
  year: 2020
  ident: br0110
  article-title: PACE solver description: SMS
  publication-title: 15th International Symposium on Parameterized and Exact Computation, IPEC 2020
– volume: 27
  start-page: 119
  year: 1988
  end-page: 123
  ident: br0130
  article-title: On generating all maximal independent sets
  publication-title: Inf. Process. Lett.
– volume: 98
  start-page: 39
  year: 1999
  end-page: 63
  ident: br0080
  article-title: On the vertex ranking problem for trapezoid, circular-arc and other graphs
  publication-title: Discrete Appl. Math.
– volume: 37
  start-page: 1283
  year: 2019
  end-page: 1311
  ident: br0070
  article-title: Positive-instance driven dynamic programming for treewidth
  publication-title: J. Comb. Optim.
– volume: 11
  start-page: 397
  year: 2000
  end-page: 403
  ident: br0030
  article-title: Generating all the minimal separators of a graph
  publication-title: Int. J. Found. Comput. Sci.
– volume: 7
  start-page: 131
  year: 2002
  end-page: 140
  ident: br0020
  article-title: Small maximal independent sets and faster exact graph coloring
  publication-title: J. Graph Algorithms Appl.
– volume: 276
  start-page: 17
  year: 2002
  end-page: 32
  ident: br0040
  article-title: Listing all potential maximal cliques of a graph
  publication-title: Theor. Comput. Sci.
– year: 2004
  ident: br0140
  article-title: Algorithmic Graph Theory and Perfect Graphs
– start-page: 1116
  year: 2019
  end-page: 1122
  ident: br0090
  article-title: Enumerating potential maximal cliques via SAT and ASP
  publication-title: Proc. IJCAI 2019
– ident: br0060
– volume: 27
  start-page: 605
  year: 1998
  end-page: 613
  ident: br0120
  article-title: Listing all minimal separators of a graph
  publication-title: SIAM J. Comput.
– volume: 38
  start-page: 1058
  year: 2008
  end-page: 1079
  ident: br0050
  article-title: Exact algorithms for treewidth and minimum fill-in
  publication-title: SIAM J. Comput.
– volume: vol. 180
  year: 2020
  ident: br0100
  article-title: Description: tdULL
  publication-title: 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)
– volume: 87
  start-page: 653
  year: 2018
  end-page: 659
  ident: br0150
  article-title: On the number of minimal separators in graphs
  publication-title: J. Graph Theory
– volume: 38
  start-page: 1058
  year: 2008
  ident: 10.1016/j.ipl.2023.106469_br0050
  article-title: Exact algorithms for treewidth and minimum fill-in
  publication-title: SIAM J. Comput.
  doi: 10.1137/050643350
– start-page: 1116
  year: 2019
  ident: 10.1016/j.ipl.2023.106469_br0090
  article-title: Enumerating potential maximal cliques via SAT and ASP
– volume: 5
  start-page: 66
  year: 1976
  ident: 10.1016/j.ipl.2023.106469_br0010
  article-title: A note on the complexity of the chromatic number problem
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(76)90065-X
– volume: 98
  start-page: 39
  year: 1999
  ident: 10.1016/j.ipl.2023.106469_br0080
  article-title: On the vertex ranking problem for trapezoid, circular-arc and other graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(99)00179-1
– volume: 27
  start-page: 605
  year: 1998
  ident: 10.1016/j.ipl.2023.106469_br0120
  article-title: Listing all minimal separators of a graph
  publication-title: SIAM J. Comput.
  doi: 10.1137/S009753979427087X
– volume: 27
  start-page: 119
  year: 1988
  ident: 10.1016/j.ipl.2023.106469_br0130
  article-title: On generating all maximal independent sets
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(88)90065-8
– volume: vol. 180
  year: 2020
  ident: 10.1016/j.ipl.2023.106469_br0100
  article-title: Description: tdULL
– volume: 37
  start-page: 1283
  year: 2019
  ident: 10.1016/j.ipl.2023.106469_br0070
  article-title: Positive-instance driven dynamic programming for treewidth
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-018-0353-z
– volume: 11
  start-page: 397
  year: 2000
  ident: 10.1016/j.ipl.2023.106469_br0030
  article-title: Generating all the minimal separators of a graph
  publication-title: Int. J. Found. Comput. Sci.
  doi: 10.1142/S0129054100000211
– volume: vol. 180
  year: 2020
  ident: 10.1016/j.ipl.2023.106469_br0110
  article-title: PACE solver description: SMS
– volume: 87
  start-page: 653
  year: 2018
  ident: 10.1016/j.ipl.2023.106469_br0150
  article-title: On the number of minimal separators in graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22179
– year: 2004
  ident: 10.1016/j.ipl.2023.106469_br0140
– volume: 7
  start-page: 131
  year: 2002
  ident: 10.1016/j.ipl.2023.106469_br0020
  article-title: Small maximal independent sets and faster exact graph coloring
  publication-title: J. Graph Algorithms Appl.
  doi: 10.7155/jgaa.00064
– volume: 276
  start-page: 17
  year: 2002
  ident: 10.1016/j.ipl.2023.106469_br0040
  article-title: Listing all potential maximal cliques of a graph
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(01)00007-X
SSID ssj0006437
Score 2.406978
Snippet Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106469
SubjectTerms [formula omitted]-hardness
Combinatorial problems
Inclusion-wise minimal separators
Minimal separators
Output-sensitive enumeration
Title On the hardness of inclusion-wise minimal separators enumeration
URI https://dx.doi.org/10.1016/j.ipl.2023.106469
Volume 185
WOSCitedRecordID wos001139580200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagy4ELb8Tykg-cWGWVuk5t31jBIkBoy2FBvUWOMxGtSlqlLaz21zMT20lZFgRIXKLIjdPI82k8nvlmhrFnFW4BpS1NYrNhmUgQLjEw1AmUWaaVGOEepdtmE-rkRE-n5kMItK_bdgKqrvXZmVn9V1HjGAqbUmf_QtzdS3EA71HoeEWx4_WPBD_xxEXKpmrVWFsTwi225BZLvs3WcEDlRL5Qngi0hb-p3Q4R4qHppTSPBPcuufFg5VMKyLWwaHOAegc77bTQ0Ud2IvWvoGqsr1IwWTvbEYEpcLQJyWjn28-zZhl_eY_Y2Z63kv-Enx1pOcEvIWRPzPLOsp8SZkLyAPHgfIfQQ_A6FzGBJ9igOTulnF2q4L2vYX44W1HcSIxwZCx9s5cLdbMpDE0GLB2yUkqUusr2hMqMHrC9o7fH03fdhk2xS88E8t8Wg98tDfDCH11uvuyYJKe32I1wluBHHgO32RWo77CbsU8HD2r7LnsxqTlCgkdI8GXFf4QED5DgPST4DiTusY-vj09fvklC54zESZlukmE1gtRACmj9l0amRSWlFQKP5qWrrFBjNI2MReMzE1mhynGmSgU2czatrCnSYnSfDeplDQ8YxzehCactSFFInK6FBAWV04XA6a7YZ2lckNyFsvLU3WSRR_7gPMc1zGkNc7-G--x5N2Xla6r87mEZVzkPRqE39nKExK-nPfy3aY_Y9R7Lj9lg02zhCbvmvm5m6-ZpAM53h2mH0A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+hardness+of+inclusion-wise+minimal+separators+enumeration&rft.jtitle=Information+processing+letters&rft.au=Brosse%2C+Caroline&rft.au=Defrain%2C+Oscar&rft.au=Kurita%2C+Kazuhiro&rft.au=Limouzy%2C+Vincent&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=185&rft_id=info:doi/10.1016%2Fj.ipl.2023.106469&rft.externalDocID=S0020019023001126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon