A Finite Element Method on Convex Polyhedra
We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis funct...
Uloženo v:
| Vydáno v: | Computer graphics forum Ročník 26; číslo 3; s. 355 - 364 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Blackwell Publishing Ltd
01.09.2007
|
| Témata: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping.
This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split. |
|---|---|
| AbstractList | We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split. We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split. We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split. [PUBLICATION ABSTRACT] |
| Author | Wicke, Martin Botsch, Mario Gross, Markus |
| Author_xml | – sequence: 1 givenname: Martin surname: Wicke fullname: Wicke, Martin organization: ETH Zurich – sequence: 2 givenname: Mario surname: Botsch fullname: Botsch, Mario organization: ETH Zurich – sequence: 3 givenname: Markus surname: Gross fullname: Gross, Markus organization: ETH Zurich |
| BookMark | eNqNkEFP2zAYhq2JSRTGf4h22GVK-BzbdXwACVW0AxW2Awhulut8Ee5Sm9kpa_89CUUcONUXf5Lf5_3k54gc-OCRkIxCQftzuiwoH8u8GgtVlACyAAqiKjZfyOjj4YCMgPazBCEOyVFKSwDgcixG5OdFNnXedZhdtrhC32U32D2FOgs-mwT_gpvsT2i3T1hH8418bUyb8OT9Pib308u7ya98_nt2NbmY55ZzqHIO2AhTsobyRi2UkZZWXFnKGGKpKlbLumGLuoZS1RaYNcaKRtJKGcVLWCh2TH7sep9j-LfG1OmVSxbb1ngM66QZKME4r_YJclkK3ge_fwouwzr6_hOaqt6SKKnoQ9UuZGNIKWKjn6NbmbjVFPTgWi_1oFQPSvXgWr-51psePf-EWteZzgXfRePafQrOdgX_XYvbvRfryWw6TD2f73iXOtx88Cb-1WPJpNAPtzP9eH0r7h5grm_YK7gJpy0 |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2019_02_012 crossref_primary_10_1145_3554920 crossref_primary_10_1109_ACCESS_2017_2731990 crossref_primary_10_1145_2601097_2601168 crossref_primary_10_1016_j_cma_2012_10_014 crossref_primary_10_1137_20M1322170 crossref_primary_10_1111_cgf_14777 crossref_primary_10_1007_s00202_021_01236_2 crossref_primary_10_1137_16M1085206 crossref_primary_10_1016_j_mtcomm_2020_101142 crossref_primary_10_1002_nme_4850 crossref_primary_10_1145_2567943 crossref_primary_10_1002_cav_1543 crossref_primary_10_1016_j_compstruct_2017_10_088 crossref_primary_10_1090_S0025_5718_2014_02807_X crossref_primary_10_1016_j_cagd_2018_05_005 crossref_primary_10_1002_nme_5449 crossref_primary_10_1002_rcs_1923 crossref_primary_10_1145_3340259 crossref_primary_10_1016_j_cma_2013_01_007 crossref_primary_10_1016_j_engfracmech_2023_109304 crossref_primary_10_1155_2018_5792372 crossref_primary_10_1007_s10444_012_9282_z crossref_primary_10_1155_2016_3261391 crossref_primary_10_1111_j_1467_8659_2008_01292_x crossref_primary_10_1016_j_cma_2013_10_025 crossref_primary_10_1145_3337680 crossref_primary_10_1016_j_apor_2019_03_012 crossref_primary_10_1145_2461912_2461920 crossref_primary_10_1016_j_enganabound_2019_03_038 crossref_primary_10_1007_s00466_010_0562_5 crossref_primary_10_1002_nme_4562 crossref_primary_10_1007_s00466_016_1307_x crossref_primary_10_3390_app13158748 crossref_primary_10_1145_1559755_1559756 crossref_primary_10_1002_cav_1485 crossref_primary_10_1007_s00371_020_01856_y crossref_primary_10_1016_j_cma_2013_04_009 crossref_primary_10_1016_j_cagd_2019_101812 crossref_primary_10_1007_s11277_018_5423_0 crossref_primary_10_1111_cgf_12528 crossref_primary_10_1016_j_cma_2017_06_014 crossref_primary_10_1016_j_enganabound_2017_07_007 crossref_primary_10_1515_cmam_2016_0019 crossref_primary_10_1016_j_cagd_2016_02_014 crossref_primary_10_1093_imanum_draf063 crossref_primary_10_1109_TVCG_2010_268 crossref_primary_10_1145_3528223_3530137 crossref_primary_10_1109_MCG_2009_32 crossref_primary_10_1002_cav_1594 crossref_primary_10_1007_s00371_011_0561_3 crossref_primary_10_1016_j_gmod_2009_02_002 crossref_primary_10_1145_2601097_2601115 crossref_primary_10_1016_j_cma_2021_114221 crossref_primary_10_1080_10407782_2019_1608775 crossref_primary_10_1007_s12206_017_1138_5 crossref_primary_10_1007_s10444_011_9218_z crossref_primary_10_1016_j_jcp_2014_05_019 crossref_primary_10_1111_j_1467_8659_2008_01293_x crossref_primary_10_1111_cgf_13157 crossref_primary_10_1145_3618403 crossref_primary_10_1111_cgf_14369 crossref_primary_10_1007_s00158_012_0781_9 crossref_primary_10_1016_j_cma_2015_04_007 crossref_primary_10_1145_1531326_1531356 crossref_primary_10_1016_j_camwa_2014_03_001 crossref_primary_10_1145_1531326_1531358 |
| Cites_doi | 10.1145/383259.383262 10.1145/566570.566578 10.1007/BF02905933 10.1145/566570.566579 10.1016/j.cagd.2006.12.001 10.1016/j.cagd.2005.06.004 10.1111/j.1467-8659.2006.01000.x 10.1145/1183287.1183295 10.1145/311535.311550 10.1145/237170.237281 10.1364/JOSAA.4.000629 10.1145/37401.37427 10.1007/BF02127699 10.1145/54852.378522 10.1145/1186822.1073229 10.1145/1186822.1073296 10.1016/S0167-8396(03)00002-5 10.1145/1186562.1015734 10.1016/j.gmod.2005.03.007 |
| ContentType | Journal Article |
| Copyright | 2007 The Author(s) Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd. |
| Copyright_xml | – notice: 2007 The Author(s) Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/j.1467-8659.2007.01058.x |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 364 |
| ExternalDocumentID | 1369578481 10_1111_j_1467_8659_2007_01058_x CGF1058 ark_67375_WNG_XJN5TW0L_M |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT ALUQN AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4408-40ef5a23f14f9b9a7c1849c133ee2983d7df3bdd029dc03caac5f7189a9420b93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249660500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 12:24:09 EST 2025 Thu Sep 04 19:09:21 EDT 2025 Sun Nov 09 08:28:09 EST 2025 Sat Nov 29 03:41:01 EST 2025 Tue Nov 18 22:14:12 EST 2025 Sun Sep 21 06:23:24 EDT 2025 Tue Nov 11 03:33:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4408-40ef5a23f14f9b9a7c1849c133ee2983d7df3bdd029dc03caac5f7189a9420b93 |
| Notes | ArticleID:CGF1058 istex:B98C0EFB728AFD575F0C84C794BCFA4B1A8B81D6 ark:/67375/WNG-XJN5TW0L-M SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
| PQID | 194675215 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_30953448 proquest_miscellaneous_30947254 proquest_journals_194675215 crossref_primary_10_1111_j_1467_8659_2007_01058_x crossref_citationtrail_10_1111_j_1467_8659_2007_01058_x wiley_primary_10_1111_j_1467_8659_2007_01058_x_CGF1058 istex_primary_ark_67375_WNG_XJN5TW0L_M |
| PublicationCentury | 2000 |
| PublicationDate | September 2007 |
| PublicationDateYYYYMMDD | 2007-09-01 |
| PublicationDate_xml | – month: 09 year: 2007 text: September 2007 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2007 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Floater M. S., Kos G., Reimers M.: Mean Value Coordinates in 3D. Computer Aided Geometric Design 22 (2005), 623-631. Irving G., Teran J., Fedkiw R.: Tetrahedral and Hexahedral Invertible Finite Elements. Graphical Models 68, 2 (2006), 66-89. Hormann K., Floater M. S.: Mean Value Coordinates for Arbitrary Planar Polygons. Transactions on Graphics 25, 4 (2006), 1424-1441. Nealen A., Muller M., Keiser R., Boxerman E., Carlson M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25, 4 (2006), 809-836. Floater M. S.: Mean Value Coordinates. Computer Aided Geometric Design 20, 1 (2003), 19-27. Ju T., Liepa P., Warren J.: A General Geometric Construction of Coordinates in a Convex Simplicial Polytope. Computer Aided Geometric Design (2007). preprint. Horn B. K. P.: Closed-Form Solution of Absolute Orientation using Unit Quaternions. Journal of the Optical Society of America 4 (1987), 629-642. Sukumar N., Malsch E. A.: Recent Advances in the Construction of Polygonal Finite Element Interpolants. Archives of Computational Methods in Engineering 13, 1 (2006), 129-163. Warren J.: Barycentric Coordinates for Convex Polytopes. Advances in Computational Mathematics 6 (1996), 97-108. 2001 2000 2006; 68 2006; 13 1987; 4 2006; 25 1971; 228 1998 1987 1975 1996 2007 1995 2006 2005 2004 2003 2002 2005; 22 2003; 20 1996; 6 1999 1988 Roth M. (e_1_2_9_27_2) 1998 e_1_2_9_10_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_11_2 e_1_2_9_32_2 Bielser D. (e_1_2_9_3_2) 2000 Bielser D. (e_1_2_9_4_2) 2003 Shewchuck J. (e_1_2_9_29_2) 2002 Shewchuck J. (e_1_2_9_28_2) 2002 Steinemann D. (e_1_2_9_31_2) 2006 Müller M. (e_1_2_9_21_2) 2004 e_1_2_9_14_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_17_2 Müller M. (e_1_2_9_22_2) 2004 e_1_2_9_39_2 Kharevych L. (e_1_2_9_18_2) 2006 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_2_2 Shewchuck J. (e_1_2_9_30_2) 2003 Steinemann D. (e_1_2_9_33_2) 2006 Langer T. (e_1_2_9_19_2) 2006 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 Bro‐Nielsen M. (e_1_2_9_5_2) 1996 e_1_2_9_26_2 Ju T. (e_1_2_9_16_2) 2005 Wachspress E. L. (e_1_2_9_37_2) 1971 |
| References_xml | – reference: Nealen A., Muller M., Keiser R., Boxerman E., Carlson M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25, 4 (2006), 809-836. – reference: Warren J.: Barycentric Coordinates for Convex Polytopes. Advances in Computational Mathematics 6 (1996), 97-108. – reference: Floater M. S.: Mean Value Coordinates. Computer Aided Geometric Design 20, 1 (2003), 19-27. – reference: Hormann K., Floater M. S.: Mean Value Coordinates for Arbitrary Planar Polygons. Transactions on Graphics 25, 4 (2006), 1424-1441. – reference: Sukumar N., Malsch E. A.: Recent Advances in the Construction of Polygonal Finite Element Interpolants. Archives of Computational Methods in Engineering 13, 1 (2006), 129-163. – reference: Irving G., Teran J., Fedkiw R.: Tetrahedral and Hexahedral Invertible Finite Elements. Graphical Models 68, 2 (2006), 66-89. – reference: Floater M. S., Kos G., Reimers M.: Mean Value Coordinates in 3D. Computer Aided Geometric Design 22 (2005), 623-631. – reference: Horn B. K. P.: Closed-Form Solution of Absolute Orientation using Unit Quaternions. Journal of the Optical Society of America 4 (1987), 629-642. – reference: Ju T., Liepa P., Warren J.: A General Geometric Construction of Coordinates in a Convex Simplicial Polytope. Computer Aided Geometric Design (2007). preprint. – start-page: 385 year: 2004 end-page: 392 – start-page: 116 year: 2000 end-page: 125 – start-page: 137 year: 1999 end-page: 146 – start-page: 285 year: 1998 end-page: 294 – start-page: 115 year: 2002 end-page: 126 – volume: 22 start-page: 623 year: 2005 end-page: 631 article-title: Mean Value Coordinates in 3D publication-title: Computer Aided Geometric Design – volume: 68 start-page: 66 issue: 2 year: 2006 end-page: 89 article-title: Tetrahedral and Hexahedral Invertible Finite Elements publication-title: Graphical Models – start-page: 35 year: 2006 end-page: 42 – start-page: 561 year: 2005 end-page: 566 – year: 1996 – volume: 228 start-page: 223 year: 1971 end-page: 252 – year: 1975 – start-page: 43 year: 2006 end-page: 51 – start-page: 269 year: 1988 end-page: 278 – start-page: 957 year: 2005 end-page: 964 – volume: 6 start-page: 97 year: 1996 end-page: 108 article-title: Barycentric Coordinates for Convex Polytopes publication-title: Advances in Computational Mathematics – volume: 20 start-page: 19 issue: 1 year: 2003 end-page: 27 article-title: Mean Value Coordinates publication-title: Computer Aided Geometric Design – volume: 25 start-page: 809 issue: 4 year: 2006 end-page: 836 article-title: Physically Based Deformable Models in Computer Graphics publication-title: Computer Graphics Forum – year: 1998 – start-page: 31 year: 2001 end-page: 36 – volume: 13 start-page: 129 issue: 1 year: 2006 end-page: 163 article-title: Recent Advances in the Construction of Polygonal Finite Element Interpolants publication-title: Archives of Computational Methods in Engineering – start-page: 181 year: 2003 end-page: 190 – start-page: 141 year: 2004 end-page: 151 – start-page: 181 year: 2005 end-page: 186 – start-page: 377 year: 2003 end-page: 386 – year: 2002 – start-page: 57 year: 1996 end-page: 66 – year: 1995 – start-page: 239 year: 2004 end-page: 246 – start-page: 421 year: 1996 end-page: 428 – start-page: 281 year: 2002 end-page: 290 – start-page: 291 year: 2002 end-page: 294 – volume: 4 start-page: 629 year: 1987 end-page: 642 article-title: Closed‐Form Solution of Absolute Orientation using Unit Quaternions publication-title: Journal of the Optical Society of America – year: 2007 article-title: A General Geometric Construction of Coordinates in a Convex Simplicial Polytope publication-title: Computer Aided Geometric Design – start-page: 63 year: 2006 end-page: 72 – start-page: 81 year: 2006 end-page: 88 – start-page: 205 year: 1987 end-page: 214 – volume: 25 start-page: 1424 issue: 4 year: 2006 end-page: 1441 article-title: Mean Value Coordinates for Arbitrary Planar Polygons publication-title: Transactions on Graphics – ident: e_1_2_9_7_2 doi: 10.1145/383259.383262 – ident: e_1_2_9_38_2 – ident: e_1_2_9_2_2 – start-page: 239 volume-title: Proceedings of Graphics Interface'04 year: 2004 ident: e_1_2_9_21_2 – ident: e_1_2_9_10_2 doi: 10.1145/566570.566578 – ident: e_1_2_9_32_2 doi: 10.1007/BF02905933 – ident: e_1_2_9_24_2 doi: 10.1145/566570.566579 – ident: e_1_2_9_14_2 doi: 10.1016/j.cagd.2006.12.001 – start-page: 115 volume-title: Proceedings of the 11th International Meshing Roundtable year: 2002 ident: e_1_2_9_28_2 – ident: e_1_2_9_8_2 doi: 10.1016/j.cagd.2005.06.004 – ident: e_1_2_9_23_2 doi: 10.1111/j.1467-8659.2006.01000.x – ident: e_1_2_9_34_2 – ident: e_1_2_9_11_2 doi: 10.1145/1183287.1183295 – ident: e_1_2_9_25_2 doi: 10.1145/311535.311550 – ident: e_1_2_9_17_2 doi: 10.1145/237170.237281 – start-page: 81 volume-title: Proceedings of the Symp. on Geometry Processing'06 year: 2006 ident: e_1_2_9_19_2 – start-page: 43 volume-title: Proceedings of the Symp. on Computer Animation'06 year: 2006 ident: e_1_2_9_18_2 – ident: e_1_2_9_12_2 doi: 10.1364/JOSAA.4.000629 – ident: e_1_2_9_6_2 – ident: e_1_2_9_36_2 doi: 10.1145/37401.37427 – start-page: 377 volume-title: Proceedings of Pacific Graphics'03 year: 2003 ident: e_1_2_9_4_2 – start-page: 285 volume-title: Proceedings of Eurographics'98 year: 1998 ident: e_1_2_9_27_2 – volume-title: Interpolation, Conditioning, Anisotropy, and Quality Measures year: 2002 ident: e_1_2_9_29_2 – start-page: 35 volume-title: Proceedings of the IEEE VR'06 year: 2006 ident: e_1_2_9_31_2 – ident: e_1_2_9_39_2 doi: 10.1007/BF02127699 – ident: e_1_2_9_35_2 doi: 10.1145/54852.378522 – ident: e_1_2_9_15_2 doi: 10.1145/1186822.1073229 – ident: e_1_2_9_26_2 doi: 10.1145/1186822.1073296 – start-page: 141 volume-title: Proceedings of the Symp. on Computer Animation'04 year: 2004 ident: e_1_2_9_22_2 – start-page: 116 volume-title: Proceedings of Pacific Graphics'00 year: 2000 ident: e_1_2_9_3_2 – ident: e_1_2_9_9_2 doi: 10.1016/S0167-8396(03)00002-5 – start-page: 63 volume-title: Proceedings of the Symp. on Computer Animation'06 year: 2006 ident: e_1_2_9_33_2 – start-page: 57 volume-title: Proceedings of Eurographics'96 year: 1996 ident: e_1_2_9_5_2 – ident: e_1_2_9_20_2 doi: 10.1145/1186562.1015734 – start-page: 223 volume-title: Lecture Notes in Mathematics year: 1971 ident: e_1_2_9_37_2 – start-page: 181 volume-title: Proceedings of the Symp. on Geometry Processing'05 year: 2005 ident: e_1_2_9_16_2 – ident: e_1_2_9_13_2 doi: 10.1016/j.gmod.2005.03.007 – start-page: 181 volume-title: Proceedings of the 19th Annual Symposium on Computational Geometry year: 2003 ident: e_1_2_9_30_2 |
| SSID | ssj0004765 |
| Score | 2.1644013 |
| Snippet | We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 355 |
| SubjectTerms | Animation Computer graphics Finite element analysis I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling I.6.8 [Simulation and Modeling]: Types of Simulation-Animation Methods Studies |
| Title | A Finite Element Method on Convex Polyhedra |
| URI | https://api.istex.fr/ark:/67375/WNG-XJN5TW0L-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2007.01058.x https://www.proquest.com/docview/194675215 https://www.proquest.com/docview/30947254 https://www.proquest.com/docview/30953448 |
| Volume | 26 |
| WOSCitedRecordID | wos000249660500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7I5oM-eBfrtQ_ii1TWpGmaR5mrItsQUdxbSHNBUTrZVOa_N2m7uaGIiG-F9oT2JKf5vuTkOwCHWYyNEbYHKNUkiJCKg0SbMCBZpCIch1lMymITtNtNej12VeU_ubMwpT7EZMHNRUbxv3YBLrLh1yBPYsIqJUILFZITiyfryA5jUoP62XV62_48JUljMlb6dhoys3k937Y1M1nVnd9HM0h0Gs8WE1K6_J-fsgJLFSz1T8txtApzOl-DxSmxwnU4PvXTB4dQ_VaZcu53iurTfj_3my53feRf9Z_e77UaiA24TVs3zYugKrUQSFdy2rJIbYhA2ISRYRkTVFrmx6QlsFojlmBFlcGZUg3ElGxgKYQkxk5rTLAINTKGN6GW93O9BT6yiA5pJSnTJLJkL0NSMyQYMgnROqIe0LFPuax0yF05jCc-w0cod-5wVTIpL9zBRx6EE8vnUovjFzZHRbdNDMTg0eWyUcLvuue8d9klN3eNNu94sDPuV16F8ZCHzDZqAQ7x4GBy18af21QRue6_Djm2_Jhalv3jEwRbFuxBXAyCX787b56n7mr7r4Y7sFAuRbuUuF2ovQxe9R7My7eXh-Fgv4qPDynvCg0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5NdNLGAwy2icAYeUC8TJkaO47jR9QR2NZGaCqib5bjHwINpagFVP57zklaqIYmNO0tUnJRcr6Lv885fwewX6bUOYUjwLllUUJMGmXWxRErE5PQNC5T1jSb4EWRjUbitG0H5PfCNPoQiwU3nxn199onuF-Q_jPLs5SJVooQsUL2FQFlJ8GownDvfPuVn_Uft0nylM2lvr2IzHJhz7P3WpqtOt7xsyUo-hTQ1jNSvv5f3-UdrLXANDxsImkDXtlqE1afyBW-hy-HYX7pMWp41BSdh4O6_3Q4rsKer16fhafjq_sLaybqA5zlR8PeSdQ2W4i0bzqNPNI6pgh1ceJEKRTXyP2ERgprLREZNdw4WhrTJcLoLtVKaeZwYhNKJKRbCvoRVqpxZbcgJIjpiDWaC8sSpHsl0VYQJYjLmLUJD4DPnSp1q0TuG2JcySVGwqV3h--TyWXtDjkLIF5YXjdqHC-wOajHbWGgJr99NRtn8rw4lqMfBRued_tyEMDOfGBlm8hTGQu8KUIcFsDe4ixmoP-toio7vp1KigyZI8_-6xWMIg8OIK2j4MXPLnvHuT_a_lfDPXhzMhz0Zf978XMH3jYL075A7hOs3Exu7S681nc3l9PJ5zZZHgAyhw39 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB6hFq2WA7ALK8IzB8QFBTV2HMdHVAiPLVGFQPRmOX5oK1CKWkDl32MnaaECIYT2FikZKxl74u-zx_MB7OYxNkbYHqBUkyBCKg4SbcKA5JGKcBzmManEJmiWJb0e69ZyQO4sTFUfYrrg5iKj_F-7ANf3yryP8iQmrC5FaLFCcmABZTNymjINaB5dpted12OSNCaTUt-uiMxsYs-Hbc3MVk3n-PEMFH0LaMsZKV36r9-yDIs1MPUPq5H0C-Z08RsW3pQrXIH9Qz_tO4zqH1dJ5_5FqT_tDwq_7bLXx353cPf8T6uhWIXr9PiqfRrUYguBdKLTlkdqQwTCJowMy5mg0nI_Ji2F1RqxBCuqDM6VaiGmZAtLISQxdmJjgkWolTP8BxrFoNBr4COL6ZBWkjJNIkv3ciQ1Q4IhkxCtI-oBnTiVy7oSuRPEuOMzjIRy5w6nk0l56Q4-9iCcWt5X1Ti-YLNX9tvUQAxvXTYbJfwmO-G984xc3bQ6_MKDjUnH8jqQRzxktlELcYgHO9O7NgLdtooo9OBxxLFlyNTy7E-fINjyYA_ichR8-d15-yR1V-vfNdyBH92jlHfOsr8b8LNal3b5cZvQeBg-6i2Yl08P_dFwu46VF6TFDXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Finite+Element+Method+on+Convex+Polyhedra&rft.jtitle=Computer+graphics+forum&rft.au=Wicke%2C+Martin&rft.au=Botsch%2C+Mario&rft.au=Gross%2C+Markus&rft.date=2007-09-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=26&rft.issue=3&rft.spage=355&rft.epage=364&rft_id=info:doi/10.1111%2Fj.1467-8659.2007.01058.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1467_8659_2007_01058_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |