A Finite Element Method on Convex Polyhedra

We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis funct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 26; číslo 3; s. 355 - 364
Hlavní autoři: Wicke, Martin, Botsch, Mario, Gross, Markus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.09.2007
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split.
AbstractList We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split.
We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split.
We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping. This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split. [PUBLICATION ABSTRACT]
Author Wicke, Martin
Botsch, Mario
Gross, Markus
Author_xml – sequence: 1
  givenname: Martin
  surname: Wicke
  fullname: Wicke, Martin
  organization: ETH Zurich
– sequence: 2
  givenname: Mario
  surname: Botsch
  fullname: Botsch, Mario
  organization: ETH Zurich
– sequence: 3
  givenname: Markus
  surname: Gross
  fullname: Gross, Markus
  organization: ETH Zurich
BookMark eNqNkEFP2zAYhq2JSRTGf4h22GVK-BzbdXwACVW0AxW2Awhulut8Ee5Sm9kpa_89CUUcONUXf5Lf5_3k54gc-OCRkIxCQftzuiwoH8u8GgtVlACyAAqiKjZfyOjj4YCMgPazBCEOyVFKSwDgcixG5OdFNnXedZhdtrhC32U32D2FOgs-mwT_gpvsT2i3T1hH8418bUyb8OT9Pib308u7ya98_nt2NbmY55ZzqHIO2AhTsobyRi2UkZZWXFnKGGKpKlbLumGLuoZS1RaYNcaKRtJKGcVLWCh2TH7sep9j-LfG1OmVSxbb1ngM66QZKME4r_YJclkK3ge_fwouwzr6_hOaqt6SKKnoQ9UuZGNIKWKjn6NbmbjVFPTgWi_1oFQPSvXgWr-51psePf-EWteZzgXfRePafQrOdgX_XYvbvRfryWw6TD2f73iXOtx88Cb-1WPJpNAPtzP9eH0r7h5grm_YK7gJpy0
CitedBy_id crossref_primary_10_1016_j_jcp_2019_02_012
crossref_primary_10_1145_3554920
crossref_primary_10_1109_ACCESS_2017_2731990
crossref_primary_10_1145_2601097_2601168
crossref_primary_10_1016_j_cma_2012_10_014
crossref_primary_10_1137_20M1322170
crossref_primary_10_1111_cgf_14777
crossref_primary_10_1007_s00202_021_01236_2
crossref_primary_10_1137_16M1085206
crossref_primary_10_1016_j_mtcomm_2020_101142
crossref_primary_10_1002_nme_4850
crossref_primary_10_1145_2567943
crossref_primary_10_1002_cav_1543
crossref_primary_10_1016_j_compstruct_2017_10_088
crossref_primary_10_1090_S0025_5718_2014_02807_X
crossref_primary_10_1016_j_cagd_2018_05_005
crossref_primary_10_1002_nme_5449
crossref_primary_10_1002_rcs_1923
crossref_primary_10_1145_3340259
crossref_primary_10_1016_j_cma_2013_01_007
crossref_primary_10_1016_j_engfracmech_2023_109304
crossref_primary_10_1155_2018_5792372
crossref_primary_10_1007_s10444_012_9282_z
crossref_primary_10_1155_2016_3261391
crossref_primary_10_1111_j_1467_8659_2008_01292_x
crossref_primary_10_1016_j_cma_2013_10_025
crossref_primary_10_1145_3337680
crossref_primary_10_1016_j_apor_2019_03_012
crossref_primary_10_1145_2461912_2461920
crossref_primary_10_1016_j_enganabound_2019_03_038
crossref_primary_10_1007_s00466_010_0562_5
crossref_primary_10_1002_nme_4562
crossref_primary_10_1007_s00466_016_1307_x
crossref_primary_10_3390_app13158748
crossref_primary_10_1145_1559755_1559756
crossref_primary_10_1002_cav_1485
crossref_primary_10_1007_s00371_020_01856_y
crossref_primary_10_1016_j_cma_2013_04_009
crossref_primary_10_1016_j_cagd_2019_101812
crossref_primary_10_1007_s11277_018_5423_0
crossref_primary_10_1111_cgf_12528
crossref_primary_10_1016_j_cma_2017_06_014
crossref_primary_10_1016_j_enganabound_2017_07_007
crossref_primary_10_1515_cmam_2016_0019
crossref_primary_10_1016_j_cagd_2016_02_014
crossref_primary_10_1093_imanum_draf063
crossref_primary_10_1109_TVCG_2010_268
crossref_primary_10_1145_3528223_3530137
crossref_primary_10_1109_MCG_2009_32
crossref_primary_10_1002_cav_1594
crossref_primary_10_1007_s00371_011_0561_3
crossref_primary_10_1016_j_gmod_2009_02_002
crossref_primary_10_1145_2601097_2601115
crossref_primary_10_1016_j_cma_2021_114221
crossref_primary_10_1080_10407782_2019_1608775
crossref_primary_10_1007_s12206_017_1138_5
crossref_primary_10_1007_s10444_011_9218_z
crossref_primary_10_1016_j_jcp_2014_05_019
crossref_primary_10_1111_j_1467_8659_2008_01293_x
crossref_primary_10_1111_cgf_13157
crossref_primary_10_1145_3618403
crossref_primary_10_1111_cgf_14369
crossref_primary_10_1007_s00158_012_0781_9
crossref_primary_10_1016_j_cma_2015_04_007
crossref_primary_10_1145_1531326_1531356
crossref_primary_10_1016_j_camwa_2014_03_001
crossref_primary_10_1145_1531326_1531358
Cites_doi 10.1145/383259.383262
10.1145/566570.566578
10.1007/BF02905933
10.1145/566570.566579
10.1016/j.cagd.2006.12.001
10.1016/j.cagd.2005.06.004
10.1111/j.1467-8659.2006.01000.x
10.1145/1183287.1183295
10.1145/311535.311550
10.1145/237170.237281
10.1364/JOSAA.4.000629
10.1145/37401.37427
10.1007/BF02127699
10.1145/54852.378522
10.1145/1186822.1073229
10.1145/1186822.1073296
10.1016/S0167-8396(03)00002-5
10.1145/1186562.1015734
10.1016/j.gmod.2005.03.007
ContentType Journal Article
Copyright 2007 The Author(s) Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2007 The Author(s) Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2007.01058.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database
CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 364
ExternalDocumentID 1369578481
10_1111_j_1467_8659_2007_01058_x
CGF1058
ark_67375_WNG_XJN5TW0L_M
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4408-40ef5a23f14f9b9a7c1849c133ee2983d7df3bdd029dc03caac5f7189a9420b93
IEDL.DBID DRFUL
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249660500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 12:24:09 EST 2025
Thu Sep 04 19:09:21 EDT 2025
Sun Nov 09 08:28:09 EST 2025
Sat Nov 29 03:41:01 EST 2025
Tue Nov 18 22:14:12 EST 2025
Sun Sep 21 06:23:24 EDT 2025
Tue Nov 11 03:33:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4408-40ef5a23f14f9b9a7c1849c133ee2983d7df3bdd029dc03caac5f7189a9420b93
Notes ArticleID:CGF1058
istex:B98C0EFB728AFD575F0C84C794BCFA4B1A8B81D6
ark:/67375/WNG-XJN5TW0L-M
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
PQID 194675215
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_30953448
proquest_miscellaneous_30947254
proquest_journals_194675215
crossref_primary_10_1111_j_1467_8659_2007_01058_x
crossref_citationtrail_10_1111_j_1467_8659_2007_01058_x
wiley_primary_10_1111_j_1467_8659_2007_01058_x_CGF1058
istex_primary_ark_67375_WNG_XJN5TW0L_M
PublicationCentury 2000
PublicationDate September 2007
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: September 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Floater M. S., Kos G., Reimers M.: Mean Value Coordinates in 3D. Computer Aided Geometric Design 22 (2005), 623-631.
Irving G., Teran J., Fedkiw R.: Tetrahedral and Hexahedral Invertible Finite Elements. Graphical Models 68, 2 (2006), 66-89.
Hormann K., Floater M. S.: Mean Value Coordinates for Arbitrary Planar Polygons. Transactions on Graphics 25, 4 (2006), 1424-1441.
Nealen A., Muller M., Keiser R., Boxerman E., Carlson M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25, 4 (2006), 809-836.
Floater M. S.: Mean Value Coordinates. Computer Aided Geometric Design 20, 1 (2003), 19-27.
Ju T., Liepa P., Warren J.: A General Geometric Construction of Coordinates in a Convex Simplicial Polytope. Computer Aided Geometric Design (2007). preprint.
Horn B. K. P.: Closed-Form Solution of Absolute Orientation using Unit Quaternions. Journal of the Optical Society of America 4 (1987), 629-642.
Sukumar N., Malsch E. A.: Recent Advances in the Construction of Polygonal Finite Element Interpolants. Archives of Computational Methods in Engineering 13, 1 (2006), 129-163.
Warren J.: Barycentric Coordinates for Convex Polytopes. Advances in Computational Mathematics 6 (1996), 97-108.
2001
2000
2006; 68
2006; 13
1987; 4
2006; 25
1971; 228
1998
1987
1975
1996
2007
1995
2006
2005
2004
2003
2002
2005; 22
2003; 20
1996; 6
1999
1988
Roth M. (e_1_2_9_27_2) 1998
e_1_2_9_10_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_32_2
Bielser D. (e_1_2_9_3_2) 2000
Bielser D. (e_1_2_9_4_2) 2003
Shewchuck J. (e_1_2_9_29_2) 2002
Shewchuck J. (e_1_2_9_28_2) 2002
Steinemann D. (e_1_2_9_31_2) 2006
Müller M. (e_1_2_9_21_2) 2004
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_17_2
Müller M. (e_1_2_9_22_2) 2004
e_1_2_9_39_2
Kharevych L. (e_1_2_9_18_2) 2006
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_2_2
Shewchuck J. (e_1_2_9_30_2) 2003
Steinemann D. (e_1_2_9_33_2) 2006
Langer T. (e_1_2_9_19_2) 2006
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
Bro‐Nielsen M. (e_1_2_9_5_2) 1996
e_1_2_9_26_2
Ju T. (e_1_2_9_16_2) 2005
Wachspress E. L. (e_1_2_9_37_2) 1971
References_xml – reference: Nealen A., Muller M., Keiser R., Boxerman E., Carlson M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25, 4 (2006), 809-836.
– reference: Warren J.: Barycentric Coordinates for Convex Polytopes. Advances in Computational Mathematics 6 (1996), 97-108.
– reference: Floater M. S.: Mean Value Coordinates. Computer Aided Geometric Design 20, 1 (2003), 19-27.
– reference: Hormann K., Floater M. S.: Mean Value Coordinates for Arbitrary Planar Polygons. Transactions on Graphics 25, 4 (2006), 1424-1441.
– reference: Sukumar N., Malsch E. A.: Recent Advances in the Construction of Polygonal Finite Element Interpolants. Archives of Computational Methods in Engineering 13, 1 (2006), 129-163.
– reference: Irving G., Teran J., Fedkiw R.: Tetrahedral and Hexahedral Invertible Finite Elements. Graphical Models 68, 2 (2006), 66-89.
– reference: Floater M. S., Kos G., Reimers M.: Mean Value Coordinates in 3D. Computer Aided Geometric Design 22 (2005), 623-631.
– reference: Horn B. K. P.: Closed-Form Solution of Absolute Orientation using Unit Quaternions. Journal of the Optical Society of America 4 (1987), 629-642.
– reference: Ju T., Liepa P., Warren J.: A General Geometric Construction of Coordinates in a Convex Simplicial Polytope. Computer Aided Geometric Design (2007). preprint.
– start-page: 385
  year: 2004
  end-page: 392
– start-page: 116
  year: 2000
  end-page: 125
– start-page: 137
  year: 1999
  end-page: 146
– start-page: 285
  year: 1998
  end-page: 294
– start-page: 115
  year: 2002
  end-page: 126
– volume: 22
  start-page: 623
  year: 2005
  end-page: 631
  article-title: Mean Value Coordinates in 3D
  publication-title: Computer Aided Geometric Design
– volume: 68
  start-page: 66
  issue: 2
  year: 2006
  end-page: 89
  article-title: Tetrahedral and Hexahedral Invertible Finite Elements
  publication-title: Graphical Models
– start-page: 35
  year: 2006
  end-page: 42
– start-page: 561
  year: 2005
  end-page: 566
– year: 1996
– volume: 228
  start-page: 223
  year: 1971
  end-page: 252
– year: 1975
– start-page: 43
  year: 2006
  end-page: 51
– start-page: 269
  year: 1988
  end-page: 278
– start-page: 957
  year: 2005
  end-page: 964
– volume: 6
  start-page: 97
  year: 1996
  end-page: 108
  article-title: Barycentric Coordinates for Convex Polytopes
  publication-title: Advances in Computational Mathematics
– volume: 20
  start-page: 19
  issue: 1
  year: 2003
  end-page: 27
  article-title: Mean Value Coordinates
  publication-title: Computer Aided Geometric Design
– volume: 25
  start-page: 809
  issue: 4
  year: 2006
  end-page: 836
  article-title: Physically Based Deformable Models in Computer Graphics
  publication-title: Computer Graphics Forum
– year: 1998
– start-page: 31
  year: 2001
  end-page: 36
– volume: 13
  start-page: 129
  issue: 1
  year: 2006
  end-page: 163
  article-title: Recent Advances in the Construction of Polygonal Finite Element Interpolants
  publication-title: Archives of Computational Methods in Engineering
– start-page: 181
  year: 2003
  end-page: 190
– start-page: 141
  year: 2004
  end-page: 151
– start-page: 181
  year: 2005
  end-page: 186
– start-page: 377
  year: 2003
  end-page: 386
– year: 2002
– start-page: 57
  year: 1996
  end-page: 66
– year: 1995
– start-page: 239
  year: 2004
  end-page: 246
– start-page: 421
  year: 1996
  end-page: 428
– start-page: 281
  year: 2002
  end-page: 290
– start-page: 291
  year: 2002
  end-page: 294
– volume: 4
  start-page: 629
  year: 1987
  end-page: 642
  article-title: Closed‐Form Solution of Absolute Orientation using Unit Quaternions
  publication-title: Journal of the Optical Society of America
– year: 2007
  article-title: A General Geometric Construction of Coordinates in a Convex Simplicial Polytope
  publication-title: Computer Aided Geometric Design
– start-page: 63
  year: 2006
  end-page: 72
– start-page: 81
  year: 2006
  end-page: 88
– start-page: 205
  year: 1987
  end-page: 214
– volume: 25
  start-page: 1424
  issue: 4
  year: 2006
  end-page: 1441
  article-title: Mean Value Coordinates for Arbitrary Planar Polygons
  publication-title: Transactions on Graphics
– ident: e_1_2_9_7_2
  doi: 10.1145/383259.383262
– ident: e_1_2_9_38_2
– ident: e_1_2_9_2_2
– start-page: 239
  volume-title: Proceedings of Graphics Interface'04
  year: 2004
  ident: e_1_2_9_21_2
– ident: e_1_2_9_10_2
  doi: 10.1145/566570.566578
– ident: e_1_2_9_32_2
  doi: 10.1007/BF02905933
– ident: e_1_2_9_24_2
  doi: 10.1145/566570.566579
– ident: e_1_2_9_14_2
  doi: 10.1016/j.cagd.2006.12.001
– start-page: 115
  volume-title: Proceedings of the 11th International Meshing Roundtable
  year: 2002
  ident: e_1_2_9_28_2
– ident: e_1_2_9_8_2
  doi: 10.1016/j.cagd.2005.06.004
– ident: e_1_2_9_23_2
  doi: 10.1111/j.1467-8659.2006.01000.x
– ident: e_1_2_9_34_2
– ident: e_1_2_9_11_2
  doi: 10.1145/1183287.1183295
– ident: e_1_2_9_25_2
  doi: 10.1145/311535.311550
– ident: e_1_2_9_17_2
  doi: 10.1145/237170.237281
– start-page: 81
  volume-title: Proceedings of the Symp. on Geometry Processing'06
  year: 2006
  ident: e_1_2_9_19_2
– start-page: 43
  volume-title: Proceedings of the Symp. on Computer Animation'06
  year: 2006
  ident: e_1_2_9_18_2
– ident: e_1_2_9_12_2
  doi: 10.1364/JOSAA.4.000629
– ident: e_1_2_9_6_2
– ident: e_1_2_9_36_2
  doi: 10.1145/37401.37427
– start-page: 377
  volume-title: Proceedings of Pacific Graphics'03
  year: 2003
  ident: e_1_2_9_4_2
– start-page: 285
  volume-title: Proceedings of Eurographics'98
  year: 1998
  ident: e_1_2_9_27_2
– volume-title: Interpolation, Conditioning, Anisotropy, and Quality Measures
  year: 2002
  ident: e_1_2_9_29_2
– start-page: 35
  volume-title: Proceedings of the IEEE VR'06
  year: 2006
  ident: e_1_2_9_31_2
– ident: e_1_2_9_39_2
  doi: 10.1007/BF02127699
– ident: e_1_2_9_35_2
  doi: 10.1145/54852.378522
– ident: e_1_2_9_15_2
  doi: 10.1145/1186822.1073229
– ident: e_1_2_9_26_2
  doi: 10.1145/1186822.1073296
– start-page: 141
  volume-title: Proceedings of the Symp. on Computer Animation'04
  year: 2004
  ident: e_1_2_9_22_2
– start-page: 116
  volume-title: Proceedings of Pacific Graphics'00
  year: 2000
  ident: e_1_2_9_3_2
– ident: e_1_2_9_9_2
  doi: 10.1016/S0167-8396(03)00002-5
– start-page: 63
  volume-title: Proceedings of the Symp. on Computer Animation'06
  year: 2006
  ident: e_1_2_9_33_2
– start-page: 57
  volume-title: Proceedings of Eurographics'96
  year: 1996
  ident: e_1_2_9_5_2
– ident: e_1_2_9_20_2
  doi: 10.1145/1186562.1015734
– start-page: 223
  volume-title: Lecture Notes in Mathematics
  year: 1971
  ident: e_1_2_9_37_2
– start-page: 181
  volume-title: Proceedings of the Symp. on Geometry Processing'05
  year: 2005
  ident: e_1_2_9_16_2
– ident: e_1_2_9_13_2
  doi: 10.1016/j.gmod.2005.03.007
– start-page: 181
  volume-title: Proceedings of the 19th Annual Symposium on Computational Geometry
  year: 2003
  ident: e_1_2_9_30_2
SSID ssj0004765
Score 2.1644013
Snippet We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 355
SubjectTerms Animation
Computer graphics
Finite element analysis
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling
I.6.8 [Simulation and Modeling]: Types of Simulation-Animation
Methods
Studies
Title A Finite Element Method on Convex Polyhedra
URI https://api.istex.fr/ark:/67375/WNG-XJN5TW0L-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2007.01058.x
https://www.proquest.com/docview/194675215
https://www.proquest.com/docview/30947254
https://www.proquest.com/docview/30953448
Volume 26
WOSCitedRecordID wos000249660500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7I5oM-eBfrtQ_ii1TWpGmaR5mrItsQUdxbSHNBUTrZVOa_N2m7uaGIiG-F9oT2JKf5vuTkOwCHWYyNEbYHKNUkiJCKg0SbMCBZpCIch1lMymITtNtNej12VeU_ubMwpT7EZMHNRUbxv3YBLrLh1yBPYsIqJUILFZITiyfryA5jUoP62XV62_48JUljMlb6dhoys3k937Y1M1nVnd9HM0h0Gs8WE1K6_J-fsgJLFSz1T8txtApzOl-DxSmxwnU4PvXTB4dQ_VaZcu53iurTfj_3my53feRf9Z_e77UaiA24TVs3zYugKrUQSFdy2rJIbYhA2ISRYRkTVFrmx6QlsFojlmBFlcGZUg3ElGxgKYQkxk5rTLAINTKGN6GW93O9BT6yiA5pJSnTJLJkL0NSMyQYMgnROqIe0LFPuax0yF05jCc-w0cod-5wVTIpL9zBRx6EE8vnUovjFzZHRbdNDMTg0eWyUcLvuue8d9klN3eNNu94sDPuV16F8ZCHzDZqAQ7x4GBy18af21QRue6_Djm2_Jhalv3jEwRbFuxBXAyCX787b56n7mr7r4Y7sFAuRbuUuF2ovQxe9R7My7eXh-Fgv4qPDynvCg0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5NdNLGAwy2icAYeUC8TJkaO47jR9QR2NZGaCqib5bjHwINpagFVP57zklaqIYmNO0tUnJRcr6Lv885fwewX6bUOYUjwLllUUJMGmXWxRErE5PQNC5T1jSb4EWRjUbitG0H5PfCNPoQiwU3nxn199onuF-Q_jPLs5SJVooQsUL2FQFlJ8GownDvfPuVn_Uft0nylM2lvr2IzHJhz7P3WpqtOt7xsyUo-hTQ1jNSvv5f3-UdrLXANDxsImkDXtlqE1afyBW-hy-HYX7pMWp41BSdh4O6_3Q4rsKer16fhafjq_sLaybqA5zlR8PeSdQ2W4i0bzqNPNI6pgh1ceJEKRTXyP2ERgprLREZNdw4WhrTJcLoLtVKaeZwYhNKJKRbCvoRVqpxZbcgJIjpiDWaC8sSpHsl0VYQJYjLmLUJD4DPnSp1q0TuG2JcySVGwqV3h--TyWXtDjkLIF5YXjdqHC-wOajHbWGgJr99NRtn8rw4lqMfBRued_tyEMDOfGBlm8hTGQu8KUIcFsDe4ixmoP-toio7vp1KigyZI8_-6xWMIg8OIK2j4MXPLnvHuT_a_lfDPXhzMhz0Zf978XMH3jYL075A7hOs3Exu7S681nc3l9PJ5zZZHgAyhw39
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB6hFq2WA7ALK8IzB8QFBTV2HMdHVAiPLVGFQPRmOX5oK1CKWkDl32MnaaECIYT2FikZKxl74u-zx_MB7OYxNkbYHqBUkyBCKg4SbcKA5JGKcBzmManEJmiWJb0e69ZyQO4sTFUfYrrg5iKj_F-7ANf3yryP8iQmrC5FaLFCcmABZTNymjINaB5dpted12OSNCaTUt-uiMxsYs-Hbc3MVk3n-PEMFH0LaMsZKV36r9-yDIs1MPUPq5H0C-Z08RsW3pQrXIH9Qz_tO4zqH1dJ5_5FqT_tDwq_7bLXx353cPf8T6uhWIXr9PiqfRrUYguBdKLTlkdqQwTCJowMy5mg0nI_Ji2F1RqxBCuqDM6VaiGmZAtLISQxdmJjgkWolTP8BxrFoNBr4COL6ZBWkjJNIkv3ciQ1Q4IhkxCtI-oBnTiVy7oSuRPEuOMzjIRy5w6nk0l56Q4-9iCcWt5X1Ti-YLNX9tvUQAxvXTYbJfwmO-G984xc3bQ6_MKDjUnH8jqQRzxktlELcYgHO9O7NgLdtooo9OBxxLFlyNTy7E-fINjyYA_ichR8-d15-yR1V-vfNdyBH92jlHfOsr8b8LNal3b5cZvQeBg-6i2Yl08P_dFwu46VF6TFDXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Finite+Element+Method+on+Convex+Polyhedra&rft.jtitle=Computer+graphics+forum&rft.au=Wicke%2C+Martin&rft.au=Botsch%2C+Mario&rft.au=Gross%2C+Markus&rft.date=2007-09-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=26&rft.issue=3&rft.spage=355&rft.epage=364&rft_id=info:doi/10.1111%2Fj.1467-8659.2007.01058.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1467_8659_2007_01058_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon