A Finite Element Method on Convex Polyhedra
We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis funct...
Uložené v:
| Vydané v: | Computer graphics forum Ročník 26; číslo 3; s. 355 - 364 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford, UK
Blackwell Publishing Ltd
01.09.2007
|
| Predmet: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedra: for tetrahedral elements, the methods are identical. For fast and robust computations, we use an elasticity model based on Cauchy strain and stiffness warping.
This more flexible discretization is particularly useful for simulations that involve topological changes, such as cutting or fracture. Since splitting convex elements along a plane produces convex elements, remeshing or subdivision schemes used in simulations based on tetrahedra are not necessary, leading to less elements after such operations. We propose various operators for cutting the polyhedral discretization. Our method can handle arbitrary cut trajectories, and there is no limit on how often elements can be split. |
|---|---|
| Bibliografia: | ArticleID:CGF1058 istex:B98C0EFB728AFD575F0C84C794BCFA4B1A8B81D6 ark:/67375/WNG-XJN5TW0L-M SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
| ISSN: | 0167-7055 1467-8659 |
| DOI: | 10.1111/j.1467-8659.2007.01058.x |